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ABSTRACT

This thesis presents an analysis of the longitudinal stability deri-
vatives for helicopter aircraft and is intended to be used as a resource
! | document for a helicopter stability and control course at the Naval
Postgraduate School.

5 Emphasis is given to the evolution of forces and moments on the
helicopter, calculation of the stability derivatives at high advance
ratios, derivation of the stability determinant and solution of the

characteristic equation to yield the modes of motion of the helicopter.
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I. INTRODUCTION

The primary interest of any aviator engaged in flight is control of
his aircraft. Without this, it becomes impossible tc¢ maintain the air-
craft in a desired flight regime and consequently the flight is rather
abruptly terminated. With adequate control over his vehicle however,
the aviator is capable of successfully performing many various tasks to
include a safe final landing.

Historically, the development of the helicopter was hampered during
its early years of evolution because of the lack of understanding of the
factors which caused stability (or instability) and therefore adequate
control over the vehicle was difficult to achieve. This situation was
exactly similar to that of the early deveiopment of the airplane. It
was only when the principles of stability and control could be under-
stood that aircraft could be developed which would fly as the designer
intended them to fly and that heliconter development could progress.

Before the details of controlling the aircraft can be fully worked
out, some understanding of the aircraft's inherent stability must be
attained because these two factors, stability and control, are closely
related. Together they determine the flying qualities, or handling
qualities of the aircraft. The aircraft must have sufficient stability
to maintain a certain desired condition of flight and to recover normail-
ly from disturbing influences (wind gusts, for instance). Pilot work-
load is also a function of stability. Since adequate maneuverability is

a necessity, the aircraft must also respond properly to the pilot's

inputs.

SRR
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An expansion of the concepts behind aircraft stability will be dis-

cussed here so that they can be more fully understood and easily dealt

; with when moving into the area of aircraft control.

{ A. EQUILIBRIUM
J A helicopter is in a state of equilibrium when the vector sum of aill
forces and moments on it are equal to zero. While in equilibrium the

aircraft will not have any tendencies to accelerate in either transla-

tional (no unbalanced forces) or rotational (no unbalanced moments)
directions. Thus the aircraft will remain in a steady flight condition.

If, however, forces or moments are introduced to upset this balanced
condition {via cockpit control inputs or wind gusts, for exampie) the
helicopter will experience an acceleration in the direction of the un-
balanced forces and/or moments. As can be expected from Newton's Second
Law, linear accelerations are proportional to the magnitude of the un-
balanced forces and the angular accelerations are proportional to the

unbalanced moments.

B. STATIC STABILITY

The static stability of a system is defined by the initial tendency

of the system to return to equilibrium conditions following some distur-
% f bance from equilibrium. If an object which is disturbed from equilib-
: : rium tends to return to equilibrium, the object has positive static
#f : stability. On the other hand, if the object, upon being disturbed, has
a tendency to continue in the direction of the disturbance, then the

object is exhibiting behavior of negative static stability. Neutral

v X . e
pe L . R L b4 yw
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static stability exists when the object has no tendency to return to

equilibrium or to continue in the direction of the disturbance.
The classic physical examples of static stability are shown in

Figure I-1 [Ref. 1]. Varicus tendencies of motion of a ball displaced

POSITIVE STATIC STABILITY

TENDENCY TO RETURN
TO EQUILIBRIUM —.,

ECuiLIBRIUM

TENDENCY TQO CONTINUE
IN DISPLACEMENT DIRECTION

EQUILIBRIUM

NEGATIVE _ STATIC STABILITY

EQUILIBRIUM ENCOUNTERED
AT ANY PQINT OF OISPLACEMENT
i

i i

N
/

\

—

NEUTRAL StaTiC sTaBiLITy

]
| Figure I-1. Static Stability
!
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from equilibrium in a depression, on a hill, and on a level surface are
shown. It should be noted that positive static stability is the desired
response in most situations.

It should also be noted that there are quantitative degrees of
static stability. This has to do with the forces acting on an object
after it has been disturbed from the equilibrium condition. An example
will illustrate this point. A large ball in a shadow depression may
have a force of one-half pound returning it to the equilibrium position
while the same size ball in a very steep-sided depression may have a
restoring force of ten pounds. While both these systems exhibit posi-
tive static stability, the second is more positive and thus a more
stable system.

If a stability control system is to be incorporated into the heli-
copter then the magnitude of the aircraft's static stability terms will
be one clue to the amount of force the control system must have to be
effective. For example, if a system has negative static stability in
yaw, some control feature must be incorporated to aliow the pilot to
keep the yawing motion under control. If the negative yaw static sta-
bility term is of large magnitude, then the control system will have to
have a great amount of power to control the tendency of the aircraft to
diverge in yaw. On the other hand, if the stability term is only
slightly negative, then the yawing motion will not diverge as quickly as
in the former case nor will the controlling power needed be as great as
in the former case.

For a complete discussion of helicopter control, dynamic stability

must also be included.
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C. DYNAMIC STABILITY

Dynamic stability refers to a body's resulting motions with respect
to time after being disturbed from equilibrium. A plot of displacement
versus time will reveal the dynamic stability tendencies of a body. A1l
possible responses of a disturbed body can be seen in Figure I-2. Two
general modes of motion exist, oscillatory and non-oscillatory (also
called periodic and aperiodic). As is implied by the term, oscillatory,
the position of the body will cycle in some manner about the eguilibrium
position.

The motion of both the oscillatory and non-oscillator wdes will
also depend on whether or not such motion is damped. If a aventu-
ally returns to the equilibrium position, then its motion is said to be
damped. If insufficient damping is available, then the body's motion
will become divergent. Divergent oscillations are generally undesire-
able and usually result in material failure of a mechanical system.
Damping tends to take energy out of a system. Some factors which cause
damping are friction, hydraulic dampers, springs, etc. Divergent
motions have energy added to the dynamic system. An exampie of this is
a pilot-induced oscillation (PIO) where the pilot's control movements
are in the same direction and with the same timing as the aircraft's
response.

Neutral stability is another possible behavior of a disturped body.
Here the body remains at its original disturbed state or osciliates at a

constant amplitude about the equilibrium state. Static stability is

necessary for dynamic stability to exist, but the converse is not true.



https://www.abbottaerospace.com/technical-library/

——

S SR

——— N At g

OISPLACEMENT

SPLACEMENT

DISPLACEMENTY

NON-0SCiL L ATOR SES

NLT AL
CSTukgarlt

@ SUBSIDE NCE

(CR CEAQ BEAT WETURWN,

TiME

POSITIVE STar.C)
(POSITIVE DYNAMIC)

VERGENCE

TiIME

INEGATIVE STATIC)
INEGATIVE Dynami()

©

NEUTP AL STATIC STagiL. Ty

—

(INEUT wa, aTart.)
(NELTHAL OynamiC!

"

TIME

Figure I-2.

TELCHRNILAL o AR

0SCiLLATORY MCDES
—————

DAMPEL JISCILLATION
N

T e
(POSITIVE STATIC)

(POSITIVE DYNAMIC)

OISPLACEMENT

®

UNDAMPED OSCILLATION

——

L

T IME

DISPLACEMENT
}

(POSITIVE STATIC)
(NEUTRAL OYNAMIC)

®

DIVERGENT OSCILLATION

-
2
w
%
b
L . g
<
M Timt
a
il
2

(PUSITIvE STAT o
(NEGATIVE DYNAMIL

Dynamic Stability

11



https://www.abbottaerospace.com/technical-library/

T Ly s LI A PN ﬁ

0. AXES SYSTEMS

To establish a basis for the discussion of unbalanced forces and
moments on an aircraft and that aircraft's subsequent reaction, a ref-
! erence coordinate frame must be established. Figure I-3 illustrates the
1 conventional arrangement of perpendicular axes which are centered at the
helicopter's center of gravity. The directions indicated by the arrows

are the positive direction.

N: YAW MCMENT

Z-AXIS

Figure I-3. Axis System Notation

12
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The positive directions of this axis system for the X, Y, and Z axes
are forward, right, and down, respectively. Thus this is a right-handed
system. (Note: A right-handed rectangular coordinate system derives
its name from the analogy that a right-threaded screw rotated through 90
degrees from O0X to OY will advance in the positive Z direction (see
Figure I-4). Forces are named for the directions along which they act.
Thus an X-force is one acting in the X-direction. The same nomenclature

system applies for the Y and Z forces.

Figure I-4. Right-Handed Coordinate System

Rational motion also occurs about the X, Y, and Z axes. These
moments are termed L, M, and N. L is the rolling moment which occurs
about the longitudinal (X) axis. A roll to the right is defined as
positive. M is the pitching moment which occurs about the lateral (Y)

axis. A nose-up pitch describes a positive value of M. The yawing

13
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N-moment occurs about the vertical (Z) axis.

A positive yaw is defined

as one which moves the nose of the helicopter to the right. Table I-1
summarizes the axis system notation.
TABLE I-1. Axis System Notation
ANGULAR ANGULAR
AX1S FORCE VELOCITY MOMENT MEASURE VELOCITY

X X U L o P

Y Y v M 0 Q

z z W N B R

This same set of orthogonal axes can be referenced in various ways,
depending on the needs of the engineer. Certain particular problems
dealing with aircraft stability can be solved more easily by the proper
selection of axis reference.

Three systems of axis reference are generally used:

(1) Gravity Axis,

(2) Stability Axis, and

(3) Body Axis.

1. Gravity Axis

In this system the Z-axis of the helicopter is always pointing
at the center of the earth, and the X-axis is directed along the horizon.

The gravity axis system is useful for linear displacements and angular

14
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accelerations. Certainm simplifications in the stability derivatives can
be achieved; however when helicopter rotation is taken into account
inertial terms and products of inertia must have lengthy corrections.

2. Stability Axis

In this system of reference, the X-axis is aligned with the
velocity vector and is positive pointing into the relative wind. The
Z-axis is perpendicular to the relative wind and the Y-axis is ortho-
gonal to both, forming a right-hand system. Using the stability axis
system can yield great simplifications of the aerodynamic terms. This
system is limited to small disturbance motions, however, because the
moment of inertia terms vary and thus are assumed to be constant in the
equations of motion.

The stability axis reference system has the useful feature of
being dire;t1y applicable to wind tunnel results which are commonly
measured parallel with and perpendicular to the wind.

The stability axis is very useful for fixed-wing analysis,
because the relative wind is always somewhat directly on the nose of the
aircraft and varies very little from that direction. The unique capa-
bility of a helicopter to decelerate from forward fiight to hovering
flight (zero forward velocity) means that the X- and Z-axes could change
by as much as 90 degrees as the relative velocity of the air changes
from horizontal (on the nose of the helicopter) to vertical (being
pulled down through the rotor disk). Thus the usefulness of this axis

system for helicopters is limited since it cannot be used for comparison

purposes over the whole range of the helicopter's velocity.
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3. Body Axis
The body axis system aligns the X-axis with a datum line on the

helicopter. The Z-axis is perpendicular to the X-axis and is directed
out the bottom of the aircraft while the Y-axis is orthogonal to both.
This system ensures that the inertial terms in the equations of motion
are independent of the flight conditions.

The reference system of body axes is very useful when studying
helicopter dynamic: because velocities and accelerations with respect to
these axes are the same as those that would be measured by instruments

in the helicopter and those that are experienced by the pilot.

16



https://www.abbottaerospace.com/technical-library/

I —

I B =l s R N R B R e o L Y

II. THE EQUATIONS OF MOTION

To obtain solutions of aircraft stability, some quantitative data
must be made available to the engineer. Naturally some formulae or
equations would be helpful when trying to arrive at a mathematical
determination of the stability problem at hand.

In this chapter some elementary concepts will be introduced which
will lead to the development of the equations of motion of the flight
vehicle. It is these equations of motion which will yield the numerical

data needed for problem solutions.

A. LINEAR MOTION

Linear motion is the motion of an object along a line. The line can
either be straight or curved so that linear motion can be further sub-
divided in rectilinear (straight 1ine) or curvilinear (along a curved
line) motion.

1. Rectilinear Motion

The rectilinear motion of a particle can be described by that
particle's position on a straight line and its time derivatives of
position. To quantify this motion a reference point must be selected.
A1l subsequent measurements of the particle's motion are made with
respect to this reference point. A coordinate system well suited for
recilinear motion is the rectanguilar cartesian coordinate system.

By making use of a selected coordinate system, p marks the

generalized coordinates of the particle's position. The distance, s, of
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the particle from the selected reference point is the difference of the
coordinates for these two points. If the origin of the coordinate
system is chosen as the reference point, then the distance to the parti-
cle simply becomes the value p. If some point other than the origin is
chosen as the reference point, then the distance of the particle from
the reference point is p - r where r is the coordinate of the reference
point from the origin. Should the particle move to a new point on the
line, p', it would then be at a different distance from the origin.

This difference is As (see Figure 2-1).

Figure 2-1. Measurement Along a Line

The distance is given as:

As = p - p' (2-1)

The rate at which the particle travels from p to p' is very often of
interest. Thus the average velocity of the particle along this path is
the distance along the path divided by the time it took to cover the

distance.

18
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vavg T at (2-2)

As the time interval becomes very small, the result will be the instant-
aneous velocity of the particle along the path.

_LIM as (2-3)

V= t")o At

Both average and instantaneous velocities will be used in subsequent
calculations.

Similarly, it can be shown that the acceleration of the particie
is the rate of change of the particle's velocity.

_ Av

aavg = At (2-4)

In the same manner as for velocity, the instantaneous acceler-

ation of the particle can be shown to be:

- LIM
a=

Q.’Q
<
|

= v (2-5)

l>|l>
<

and since dv = ds/dt, acceleration can also be expressed as the second

derivative of position with respect to time.

_ ds/dt _ d?s _ . -
= 7q Tar" (2-6)

The calculation of accelerations become important because they lead

directly to forces on the airframe via Newton's Second Law:

F = ma (2-7)

19
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2. Curvilinear Motion

The second type of linear motion occurs along a curved path and
is therefore called curvilinear motion. Plane curvilinear mition occurs
when a particle that is moving along a curved path remains in a single

plane. For this case the position in which the particle motion occurs

(see Figure 2-2).

Figure 2-2. Curvilinear Motion

In this figure, the particle has moved from point p to point p' along
the curved path. The particle's motion takes place in the plane of the

paper and occurs about point 0. The position of the new point p' is

20
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given by the vector addition of the old position vector at p (vector r)
plus the change that occurs during the movement (vector Ar).

As was the case with rectilinear motion, the average velocity of
a point along the path is equal to the time rate of change of the
point's position vector. Thus

_ Ar -
Vavg ~ At (2-8)

If the time interval becomes smaller and smaller, the Ar vector ap-
proaches tangency to the curved path. In the 1limiting case, the
velocity will approach the instantaneous velocity of the particle along
the curved path.

v = LIM Ar _

- t‘)o E - (2-9)

Q'Q
s

If the speed of the particle increases as it moves from p to p',
then the particle is accelerating. The same steps that were used to
develop the instantaneous velocity can be followed to find the acceler-
ation term. The result is

_ LIMav _dv _ d2r -
T teo At T at ~ dt? (2-10)

a

B. ANGULAR MOTION
While linear motion can be used to describe a significant number of
motions that are commonly encountered in physics, moticn can also be

described in another way. Angular measurements to a moving point from a

fixed point are commonly used when dealing with rotating systems.

—
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The description of angular motion will be limited to that occuring

in a plane. Before this angular motion can be described, some reference

point must be selected. A point in the plane of motion is a good refer-
ence point and an axis perpendicuiar to the plane of motion serves as

the axis about which the angular motion occurs. This becomes the axis

- Sy

of rotation.

Before angular measurement can begin, a reference axis in the plane
of rotation must be chosen. Al1l angular positions will be measured with
respect to this reference axis. The reference axis itself is chosen
arbitrarily and it does not rotate. Although the system being measured
may rotate, the reference axis remains fixed.

Angular displacements are measured in degrees or radians using the
symbol 6. By convention, a positive angular displacement is in a

counterclockwise direction from the reference axis (see Figure 2-3).

Figure 2-3. Angular Measure

S e e

22
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According to the foregoing rules, the anguiar measurement of line OB
is at some anglie 6 from the arbitrarily chosen reference axis, 0A. The
axis of rotation is perpendicular to the paper at point 0. The angular
rate at which the line moves from position 0OA to OB in Figure 2-3 is the
time rate of change of its angular position. As was the case with
previous descriptions of linear velocity, the angular velocity, w, is

the first time derivative of the angular position.
= =90 (2-11)

Similarly, angular acceleration, «, is the time derivative on angular

velocity or the second time derivative of angular position.
a:%:{uz‘é (2‘12)

A common case of motion combines both curvilinear and angular
motions. This case of motion occurs when a particle moves around a
fixed point at a fixed distance from that point. An example of this is
the arc traced out by the helicopter's rotor biade tips.

As a helicopter blade sweeps the air, all points on the blade are
rotating at the same angular velocity. However each point at a differ-
ent radius from the center of the axis of rotation has a different
curvilinear velocity or speed. This can be readily understood by ex-
amining Figure 2-4. R; and R, are two points located on the same
rotating line (for example, a rotaor blade). During a single rotation of
the rotor disk, R, travels a greater distance than R,. The distance

traveled by each point is the circumference of the circle traced out by

23
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Figure 2-4. Dependence of Linear Velocity on Radius

the point. The path traced out by R, is longer than that traced out by
R,. Since both points compiete one revolution of the circle in the same
amount of time, R, must travel faster than R;.

The velocity of a particle rotating about a fixed point is given by
both its anguiar velocity and distance from the axis of rotation and is
developed in the following manner (refer to Figure 2-5). The instant-
aneous velocity of the rotating point is the limit as time approaches
zera of the change in the particle's position vector divided by tne

average time over which this positicn change occurs.

_ lim ar o1
VE gt (2-13)
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Figure 2-5. Linear Velocity of a Rotating Point

where Ar = r times the change in angular displacement. Thus

- 1im rag _ p

= —_— = -1
t"‘) At ru \2 -4)

r is measured in feet or meters and w is measured in radians per second.
It can be seen from equation (2-14) that a particle located at half
the distance from the rotor hub to the tip of the rotor is moving at

half the linear velocity of a particle located at the rotor tip.
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C. FORCES AND MOMENTS
1. Forces

No discussion of forces would be complete without giving credit
to Sir Issac Newton and his statements of the basic laws governing the
motion of a particle [Ref. 2]. They are:

Law I. A particle remains at rest or continues to move in

a straight line with a uniform velocity if there is no

unbalanced force acting on it.

Law II. The acceleration of a particle is proportional to

the resultant force acting on it and is in the direction of

the force.

Law III. The forces of action and reaction between inter-

acting bodies are equal in magnitude, opposite in direction,

and collinear.

The word force is mentioned in all three of Newton's laws.
Therefore it would seem that force plays a large part in the movement of
a particle (or of an object, if tne center of gravity of that object is
considered to be a particle). Force can be defined as the action of one
body on another. A force acting in a direction tends to move an object
it acts upon on the same direction, according to Law II.

7t should be noted that forces are vector quantities. That is,
they are composed of a magnitude and a direction. The direction of a
force becomes very important when attempting to predict the reactions of
objects to farces.

The importance of the vectorial nature of forces cannot be over-
emphasized. For example, what is the resultant of a 50-pound force

applied to another 50-pound force? The correct answer could be zero

pounds, 100 pounds, or anywhere in between depending on whether the
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forces were directly opposite to each cther, in the same direction, or
at some other angular position between these two extremes.

Newton's second law is of primary interest for the moment.
Another way of stating the second law is that the resultant force acting
on a particle is proportional to the time rate of change of the momentum
of the particle and that this change is in the direction of the force.
The proportionality factor is the mass of the particle in question.

Both statements of Newton's second law lead to the same result

in equation form:
2 :— _dmv _mdv _ = _
F = —-—dt = —dt = ma (2 15)

It will be assumed that the mass of the particle does not change
during the time interval dt. Thus dmv/dt can be written mdv/dt. Also
note that I symbol was used. The resultant acceleration of the particle
is equal to the resultant vector sum of the ‘orces acting on the parti-
cle. Thus many different forces acting on an object can be vectorially

resoived into one force (see Figure 2-6).

RESULTANT
FORCE

Figure 2-6. Vector Summation

27
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The particle will -espond in the same way no matter if we deal
with the several individual forces or with their resultant, but the
picture is greatly simplified when dealing with only a single resultant
force.

Both the vectorial nature of forces and the capability to sum
individual forces can be used with the axis systems previously described
for the helicopter. Being a complex machine, the helicopter can have
many different forces from different sources acting at various points on
the body of the aircraft. These forces can be broken down into compon-
ents along the aircraft axes and summed such that there now exists three
mutually perpendicular forces acting at the center of gravity of the
aircraft. The problem of the helicopter's reaction to these various

forces is now greatly simplified (see Figure 2-7).

Figure 2-7. Components of a Vector in a Plane

28
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Equation (2-15) can be written for each axis direction:

ZFX = mEX ; Z?Y = “‘SY ; Z?Z = m'a'z (2-16)

i

1 As an example, a single force not lying in any single plane would have
z components in the X, Y, and Z directions. The comronents of this force
; would be determined and would be respectively included in each of the
three force equations above. If a force acts entirely along a single
axis, the Z-axis for example, it would have no components in the other
two directions, X or Y in this case.

Units of measure for force are listed below in Table 2-1.

Table 2-1. Units of Measure for fForce

o ENGLISH $1
MBOL ENgig%E&ING SYSTEM
FORCE F Pounds Force Newtons
MASS m Slugs Kilograms
ACCELERATION a ft/sec? m/sec?
L

Since the consideration of variable masses will not be con-
sidered (the mass of a helicopter wiil not change over the time periods
under consideration here) it can be seen that the acceleration of a body

is directly proportional to the force acting on the body.

29
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2. Moments
Forces applied to a particle create only linear motion of the

particle. This is so because a particle is considered to be a very

small quantity and any forces applied must necessarily act at its center

of mass. The phenomenon of angular acceleration occurring simultaneous-

it b i i

ly with linear acceleration arises when a force is applied to an object

(something larger than a particle). If the direction vector of a force

applied to an object does not pass directly through the object's center
of mass then the object will start to rotate about its center of mass
because a moment has been created.

A moment is a force applied at a distance from an axis around

which an object rotates. If the object is located in free-space, it

will rotate about its center of mass. If the object is pinned somehow,
the pin will act as the pivot point about which the object will rotate.

In equation form, for a fixed-axis system:

where M is the moment in foot-pounds, F is the force, and r is the per=
pendicular distance from the object's center of mass to the force vector
(see Figure 2-8).

Just like a force, a moment is a vectorial quantity but it is 23
rotational vector in this case. As with angular velocity, a positive
] moment is defined in the counterclockwise direction.

In the evaluation of the effects external moments have on the

motion of the helicopter, the moment of momentum, H, is considered.
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Figure 2-8. Generation of a Moment

By definition, the moment of momentum of a small part on the aircraft,

dm, is:
sh=r x ¥ dn (2-18)
Taking the derivative of the above yields

-d—ah=d—(?~x\7)dm=ﬂx\7dm+hg¥ om (2-19)

Considering a small chunk of mass on a rotating body, the velo-

city of this piece of mass is:

- - d_;‘ .
VeV o+ g (2-20)

Where dr/dt is the rotational velocity of the body and VC is the velo-

city of the object's center of mass.
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Also,
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(2-21)

This is true since dV/dt &m = 6F is just F = ma, while 5G is the moment

about the center of mass of the object produced by force SF.
Substituting equations (2-20) and (2-21)

into equation (2-19)
gives:

'__d_. ST S - -
5G = at (6h) - (V Vc) X V &m (2-22)
where G is the linear momentum of a particle, mv
Since V x V = 0, this becomes
__d— - - - _
6G = ot (5h) + VC X V dm (2-23)

If equation (2-23) is summed for all small mass elements on the

helicopter the resultant mass is the total mass of the helicopter and

the resultant velocity is Vc. As shown before, V x V=0 and equation

(2-23) reduces to
3t (2-24)

This equation states that the angutar momentum of an object is changed

when a moment is applied to the object.
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D. CORIOLIS FORCES AND MOMENTS

Coriolis forces arise from the acceleration produced when a particle
moves along a path in a plane which is itself rotating. A flapping
blade is subject to a coriolis acceleration in the plane of rotation.

When a rctor blade flaps, iis moment of inertia about the rotational
axis changes. This can be seen by considering the center of mass of the
blade being rotated to an increased flapping angle, 8 + AB. As the
blade flaps up, the center of mass moves closer to the rotational axis

(see Figure 2-9),

— HORIZON

Figure 2-9. Motion of Flapping Blade

From the law of the conservation of angular momentum, the blade wili
experience an accelerating force if the center of mass of the blade
moves closer to the rotational axis (flaps up from A to B) or a retard-

ing force if the center of mass moves farther away {fiaps down from B ‘o
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A). These forces are manifested as vibrations at the blade root, and
for every harmonic of flapping there is an appropriate inplane Coriolis
1 vibration.

To find the coriolis force the following steps are used [Ref. 3].
Point B has two components of velocity which are of interest, dr/dt
along the blade projection (inwards) and wr cos (B + AB) (in the plane
of rotation). Taking components of velocity on the line perpendicular

to the blade at P,, (see Figure 2-10) results in:

g% A8 + Qr cos (B + AB) (2-24)

and the difference in velocity perpendicular to the original projection

between P, and P; is:

%{ A8 + Qr {(cos B + AB) - Qr cos B

(2-25)

= { %f (r cos s)}ae + Qr (cos B cos AB - sin B sin AB) - Qr cos B

P
»%) 2
%l’
o5t
C
.{’/
Y=Y cos B
?

‘ Figure 2-10. Flapping Blade in Plane of Rotation



https://www.abbottaerospace.com/technical-library/

m"—_ Ll o RS B R B L s B, ST R

Equation (2-25) was arrived at by using the trigonometric identity
cos B+ AB = cos B cos AB - sin B sin AB (2-26)

Using small angle theory cos B8 1 and sin B B. This will result
in

AV = ¢ sin B g% A8 - Qr B AB (2-27)

Dividing through by At to find the acceleration yields:

av _ . dp a6 _ AB -
At "8 gt at - B At (2-28)
3 & - ég = ]
and since 3t Q and it B,
ap =" B BQ - or Bh (2-29)

which gives the final form of the Coriolis acceleration:

dp =2 M0 B8 (2-30)

If the Coriolis force 1is desired, simply multiply the mass of the

blade by the acceleration obtained above.

Fcor == 2 Mb 2 BB (2-31)

This Coriolis force can be considered to act at the center of the
blade and it produces a moment about the hub of the rotor. The moment
produced therefore is the force times the distance through which the

force acts,
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M. =2M r2Qps (2-32)

cor b

A useful relation can be used to shorten this equation. The moment

of inertia of an object is defined as
I =/ y2dm (2-33)

where y is the distance from an axis and dm is an elementary particle of
mass. If the total mass of the object and its center of mass location

is known, the moment of inertia can be expressed as
I=k2m (2-34)

where k is the distance from the axis to the center of mass and m is the
total mass. Thus, substituting r for k in equation (2-34) and substi-

tuting equation (2-34) into equation (2-32) yijelds

Mcor =21QBB (2-35)

NOTE: The Coriolis force just derived is not the only Corialis farce
that arises from the dynamic notions of the helicopter. It is
perhaps the most significant and easily understood Coriolis
force, but it must be pointed out that many Coriolis forces must
be accounted for when a very rigorous analysis of the heli-
copteris motions is conducted. Other Coriolis forces will arise
from aercelastic effects of the rotor blades, differences in
motion between the helicopter rotor and fuselage and also from
fuselage aeroelastic effects. Many of these latter Coriolis
forces will be very small and will not be apparent when con-

sidering the helicopter as a rigid body.

36
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E. RIGID BODY EQUATIONS

Now that some of the background concerning the nature of forces and
moments has been presented, it remains to put these ideas to use for the
solution of problems dealing with helicopter stability. Simply put, the
various forces and moments that act on the helicopter are resolved into
components which act along or about one of the principal axes of the
helicopter. The various forces and moments to be considered are the
factors which give rise to the vehicle's motion. .

According to Reference 4, certain assumptions concerning the heli-
copter's motions and references will have to be made in order to
establish the ground rules for further analysis and also to simplify the
systems of equations that will arise.

Assumption 1: The helicopter is a rigid body.

A rigid body is one in which motions between individual mass ele-
ments that make up the body do not occur. In this way, distances
between specified paints in the helicopter's fuselage remain fixed.
Thus no bending or twisting of the fuselage is considered as the heli-
copter moves through space.

This assumption allows the helicopter's motion through space to be
described as the rectilinear motion of the center of mass of the air-
craft and by the curvilinear motion of the same point. In reality, the
fuselage does bend and twist to a certain degree in flight. The dy-
namics of the structure are changed when these aeroelastic effects are

considered. The aeroelastic effects serve to greatly increase the

degrees of freedom that must be considered when analyzing the equations

PITIPRRT VN
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of motion. A rigid body will be assumed here since aeroelasticity is
beyond the purpose of this paper and consequently the solution to gener-

ated problems will not be overly complicated.

Assumption 2: The earth is considered to be flat and is fixed in
space.

This assumption is made to negate any minor corrections that may

[T U STy

otherwise have to be made for the gravity constant or for a moving in-
ertial reference frame. Negligible error is introduced by this assump-
tion since the altitudes, air speeds, and time lengths under consider-
ation are small.

Assumption 3: The helicopter is assumed to be in a trimmed level

flight condition, or in a hover. Small perturbations
in the helicopter's motion are then considered.

This assumption allows the linearizing of normally nonlinear re-=
sponses by considering only small increments of motion. Simplification
of the required equations used to solve for the helicopter's motion is
the result. While the analyses will be performed for very small changes
in motion, the results can be extended to larger motions without very
much loss in accuracy.

Other mathematical benefits arising from this assumption include the

small angle approximations for sine and cosine:

(1) sine = a

(2) cosa = 1

where o is measured in radians, and the fact that the power of any small

increment can be ignored vhen compared to the original: g2 = 0 when ¢ is

small.

'\;..';{_“n_‘ SN
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Assumption 4: The helicopter is trimmed in steady, level flight and
the longitudinal forces and moments due to lateral
perturbations from trim are negligible.

This assumption discounts any initial angular velocities in roll or
yaw (Py, Rp) and any initial lateral velocity (Vo). Furthermore, any
lateral perturbations that do arise will not affect the longitudinal
response of the aircraft. This last statement is important since the
longitudinal and Jlateral equations of motion are thereby decoupled.

Assumption 5: The X-Z plane is a plane of symmetry.

This is usually the case for most flight vehicles. Although this is
net true for many helicopters, very little error is introduced into the
final equations of motion when this assumption is made. With symmetry
and with Assumption 4 considered all rolling moments, yawing moments,
and side forces are reduced to zero. Consequently the longitudinal
equations of motion can be described by just three equations: those
dealing with longitudinal and vertical forces and with the pitching
moment.

Combining these five assumptions makes it possible to describe the
helicopter's motion with just six equaticns. This is so because the
assumptions allowed many additional degrees of freedom to be dropped
from consideration. Consequently, three force equations and three
moment equations are used to describe the helicopter's motion.

Note in particular Assumption 4. Since the longitudinal ana lateral-
directional motions are now decoupled, only those forces and moments
which affect the longitudinal motions of the helicopter need be con-

sidered. These turn out to be the X and Z forces and the M moment.
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1. Three Force Equations

Since forces act in straight lines, it is very convenient to
resolve the components of given forces acting on the helicopter along

the X, Y, and Z axes. Only external forces on the aircraft will be

j considered. Internal forces must necessarily be opposed by other in-
: ternal forces such that the sum total of all the internal forces on the
helicopter's fuselage is zero. While internal forces may play an im-
portant part in airframe structural considerations, they play no part in
the analysis of the helicopter's motions. The external forces that will
be considered arise from three principal sources: gravity forces, in-
ertia forces, and aerodynamic forces.

2. Three Moment Equations

The same principles that were used for the determination of the
three force equations are also used for moments. Here, however, instead
of the X, ¥, and Z axes acting as directions along which forces a:e
measured, the axes act as lines around which the moments turn. No-

menclature of the moments will be briefly reviewed:

L-Moment: Rotates about the X-axis; positive is right wing down.

M-Moment: Rotates about the Y-axis; positive is nose up.

N-Moment: Rotates about the Z-axis; positive is nose right.

F. EXPANSION OF FORES AND MOMENTS

The equatons for the generalized aerodynamic forces and moments

acting on an aircraft have commonly been written in the form

A=2C, % p V23S (2-36)

A
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where A stands for any desired force or moment, CA is a nondimensional

coefficient, p is air density, V is the steady-state velocity of the

vehicle, and S is the surface area. It can be seen by this equation
that the aerodynamic forces and moments generated on the helicopter are

dependent upon the density of the air through which the vehicle is

e A et e

flying and also the velocity of the aircraft relative to the air.

The nondimensional coefficients, CA, are also dependent on Reynolds
and Mach numbers, angles of attack and sideslip, and linear and angular
velocity and their derivatives. If the aerodynamic forces are consider-
ed to be continuous functions of all these variables, each of the forces
and moments (X, Y, Z and L, M, N respectively) can be expressed in terms
of the variables by expanding the terms in a Taylor series [Ref. 4].

A Taylor series for the effect of forward velocity changes has the

form:

aF 2F au? | 9% Al
F = FO + 5: Au + gag éET + 533 é%? + .. (2-37)

A1l partial derivative terms starting with the second derivative are
higher-order terms and can be negtected by means of Assumption 3 in the
previous section without changing the accuracy of the solution. This
will help to simplify the eguation by eliminating many terms which serve
to complicate the problem but contribute very little to the value of the
final solution.

The force expression is now reduced to one showing the initial trim
condition and all changes to the force resulting from the first partial

derivative of force with respect to major variables and their deriva-

tives when applicable.
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af 9fF - . OF .- -
5g du v 57 Azt AG + — Av + —/ AZ + ... (2-38)

F=F0+ an
38 du 9z

Since the change in force from a steady flight condition due to
perturbations is desired and not the tectal force, the trim force can be

subtracted from both sides of the equation. The result is:

aF = 26 Ay ¢ 8 47 + 2F 49 4 3F nu+ 3 a7 v .. (2-39)
au az 20 81] 82
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IIT. CALCULATION OF THE STABILITY DERIVATIVES

Probably the most 1imiting factor of expanding the helicopter's
utility to a multi-mission role has been its relatively slow cruise
speed. Therefore much emphasis has been directed in recent years to-
wards increasing the maximum forward flight velocity of helicopters.
The stability response of helicopters in hover and in slow flight can
generally be classified as one consisting of two heavily damped roots
and a divergent oscillatory motion. These characteristics can (and
usually do) change as the aircraft increases its forward speed.

Even though the response of a helicopter in a hover is generally
known, its response at high forward flight velocities cannot accurately
be predicted. Therefore, the engineer must be able to calculate the
stability derivatives for the aircraft in question and at the proper
flight condition (altitude and ajrspeed) so that he may solve for the
helicopter's modes of response. The equations and procedures presented
in this chapter outline how the calculation of those stability deriva-
tives are carried out. The charts used for this procedure appiy to the
regime of high forward flight velgcity with an advance ratio of 0.3 or

greater.

A. TYPES AND USES

Both dimensional and non-dimensicnal stability derivatives are used

for the solution of problems dealing with aircraft stability and control.
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Each type derivative has certain useful properties. By using non-dimen-
sional derivatives, the stability characteristics of aircraft can be
compared regardliess of size.

Non-dimensional derivatives are concerned with force and moment co-
efficients and with non-dimensional velocity and time. The real advan-
tage to using non-dimensional stability derivatives occurs when
comparing the stability values between different sizes of the same
aircraft, for example comparing data obtained from a one-tenth scale
mode! in a wind tunnel with data expected or obtained from flight tests
of the full scale aircraft. This capability of non-dimensional deriva-
tives to allow the comparison of data in this manner makes possible the
prediction of stability characteristics of aircraft based on tests
performed on scale models. It is immediately apparent that this is an
economical benefit when the alternative is to perform all tests and
development on full scale aircraft. 1

Dimensional derivatives are good for measuring direct forces and
moments of the aircraft. The use of dimensional stability derivatives
lead directly to numerical coefficients in the sets of simultaneous

differential equations describing the real time dynamics of the airframe.

By analyzing the dynamic response numbers thus obtained, the heli-
copter's stability characteristics can be ascertained. Once this is
known, the amount of control necessary to reach the desired flying
. qualities can be added.
Care should be taken when comparing the values of stability deriva-

tives received from different sources. It is important to note that

14
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both dimensional and non-dimensional derivatives are widely used
throughout the industry and that different methods may be used to non-

dimensionalize or normalize the derivatives for a particular aircraft.

Thus if the values of the stability derivatives for a given aircraft

from one source are found to differ from those values received from

PR SRR ST

another source, the most likely cause for the difference is that a
different system of non-dimensionalizing or normalizing the derivatives

has been used by each source.

It should be noted that one common method used for dimensional
derivatives is to normalize the force derivatives by the mass of the i
aircraft and the moment derivatives by the aircraft's moment of inertia
about the pitching axis. This method is used here.

In this chapter the procedures will be outlined for calculating the

w» U’ tw u’ W

are needed to solve the stability determinant which will yield the modes J

stability derivatives Xu, X,2Z ,2 ,M, M, 6 and Mq. These derivatives

of motion of the helicopter. These procedures are presented in more
detail in [Ref. 5].

Initially, certain geometric data must be known about the heiicopter.
The forward flight velocity at which the stability condition will be

evaluated must also be chosen, and the trim condition of the helicopter

computed. Since the aerodynamic forces which act on the helicopter are

dependent on flight velocityv, the trim condition and subsequent stabii-

jty derivatives will be different for each velocity evaluated.

After the trim conditions of the helicopter are found at the desired
airspeed, the isolated derivatives are determined and corrected for main
rotor solidity to yield the 1local derivatives. From these, the total

derivatives may be calculated.

e 8 b e
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B. DEFINITION OF TERMS
The following definitions will be used:
1 a = Lift curve slope of the rotor blade
} 2o = Blade coning angle (radians)
{ a, = Longitudinal flapping angle (radians)
AR =  Aspect ratio
Ax = Fuselage frontal area (sq ft)
FUS
AZ =  Fuselage planform area (sq ft)
FUS
b = Number of rotor blades
b, =  Lateral flapping angle (radians)
C = Blade chord (ft)
CD0 = Profile drag coefficient
Cy = Drag coefficient = D/%pV2S
CD' = Drag coefficient of the main rotor = D/T.F.
CL = Liv- coefficient = L/%pV2S
CL' = Lift coefficient of the main rotor = L/T.F
CQ =  Rotor torque coefficient = Q/T.F. R
D =  Aerodynamic drag force (lbs)
f e = Blade hinge offset
: Ib = Blade moment of inertia about flapping hinge (slug~sq ft)
| IY = Aircraft moment of inertia about the pitching axis
; K =  Downwash interference factor
|
!
)
' 46
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L =  Aerodynamic 1ift force (1bs)
]X = Longitudinal moment arm, po§itive when the point of app!ij
cation of the force rector is forward from the C.G. position !
(ft) |
? ]Z = Norm§1 (Yertical) moment arm, po§itive when the point.of 4
| application of the force vector is below the C.G. position
i (ft)
? M = Pitching moment of an aircraft component (ft-1b)
f Mu, Mw, Mq = Pitching moment total derivatives !
; MS = First moment of blade mass about the flapping hinge (slug-ft) ;
‘ My =  Mach number of advancing blade tip ?
Q = Rotor torque (ft-1bs) :
o = Dynamic pressure = %pV2 (1b/sq ft) ;V
R = Rotor radius (ft) :
S = Area of an aerodynamic surface (sq ft) i
T =  Rotor thrust (1bs; §
T.F. = Thrust factor = pnR2(QRj2 (ibs) 3
Vo = Steady state or trim value of velocity (ft/sec) {
VS = Velocity of sound in standard atmosphere (ft/sec)
W = Aircraft gross weight (1bs)
X = Longitudinal force along the body X-axis (lbs)
Xu, Xw = Total stability derivatives of the longitudinal X-force
Z = Normal force along the body Z-axis (1bs)
: Zu’ Zw = Total stability derivatives of the normal Z-force
E a = Remote wind angle of attack relative to body X-axis (radians)
f a. = Rotor angie of attack (radians)
|
I ¥ = Lock Intetia number = E%ﬁﬂ:
; £ = Downwash interference angle {(radians)
! 17
i
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_ . . _ 0 c i
A = Rotor inflow ratio = oR
V0 cos o
1 M = Rotor tip speed ratio = R
j p = Air density (slug/cu ft)
! b c
g = Rotor solidity = R
Q = Rotor angular velocity (radians/second)
; ] = Blade twist (radians)
0 75 = Blade section pitch angle at .75 radius (radians)
SUBSCRIPTS
F =  Pertaining to the front rotor i
FUS = Pertaining to the fuselage i
T = Pertaining to the horizontal tailplane

TR =  Pertaining to the tail rotor.

The following procedures give a step-by-step approach that can be
followed to find the desired total stability derivatives. The calcu-
lation of the stability derivatives is nothing more than an accounting
of the forces and moments acting on the aircraft. Because of the number
of calculations involved and the interaction of many different compon-

ents, however, the calculation procedure is necessarily a lengthy one.

' C. HELICOPTER DATA
| Information about the physical Tlayout of the helicopter must be
available before the computations can begin. The following must be

known:

———— .
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a, b, c, 1, R, @, W, Ib’ IY’ MS’ AX’ AZ

(Cp ) » (MR, Sy, ap
°7r

1 Because of the high aspect ratio of a helicopter blade, the 1ift curve
slope of the blade, a, can generally be taken as 5.73 per radian. Es-
tablish the altitude and flight speed, Vo, at which the derivatives are
desired to be known. The altitude will determine the atmospheric den-
sity. For sea level, p = .002377 slugs/cu ft.

Knowing the above, the following parameters can be calculated:

g, W, MT, VS’ o, T.F., Rotor Tip Speed

0. CALCULATION OF HELICOPTER TRIM VALUES

First approximations of the fuselage 1ift and drag coefficients are
determined with the assumption that Uryg = 0. CL and CD will be recal-
culated when more precise information is known about Teyse A theore-

tical or experimentally obtained graph of CL s CD and CM versus
FUS FUS FUS

Xeis is needed to begin the computation. Figure 10.1-3 [Ref. 5] is an
examplie of such a graph.
The first approximation of fuselage 1ift and drag will be made using

the coefficients just obtained.

' L =C

Fus = L G0 Ay (3-1)

Fus = Co,, . 9o Ax (3-2)

49



https://www.abbottaerospace.com/technical-library/

i

h‘ I'Eroepi Al 1 r22En 2w [

The initial estimate of main rotor 1ift and drag forces can now be made.
(3-3)
D= -DFUS (3-4)

The rotor 1ift and drag coefficients are non-dimensional and are
obtained by dividing main rotor 1ift by the thrust factor. Both are

normalized by rotor solidity.
c ]
L - L -
('o—) * TFo (3-5)

C ]
D D )
(*c—) TFS (3-6)

Reference 6 contains theoretical rotor data performance charts for

hinged rectangular planform blades of various degrees of twist. Differ-
ent charts are used for the variables of blade twist, tip speed ratio
and advancing tip mach number. A1l charts are based on a rotor solidity
of 0.1. Corrections must be made if the rotor solidity of the heli-

copter under evaluation varies from 0.1. The charts are entered knowing:

Cr' c ' C
D L .
r and-jg— to find —g , a1, g and 8.75 .

M=0-0.1 (3-7)
c, C !
('%’) 0.1° ‘%’ (3-8)
c ') Cn' (c ') 2
D ] Ao L
— = — - — 3'9
( 5 )y, o Tar\% (3-2)
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The above two quantities, (—%—) 0.1 and (-2—) 1’ together with the

ag
known or calculated quantities blade twist angle, 8, main rotor tip

speed ratio, p, and mach number of the advancing blade tip, MT’ are

needed to use the charts in [Ref. 5]. These charts will yield an ap-

proximation of the following main rotor trim parameters:

— e i

(1) a. Rotor angle of attack

(2) ap Blade coning angle

(3) a; Longitudinal flapping angle

(4) by Lateral flapping angle

(5) 6_75 Blade section pitch angle at .75 radians
(6) A Inflow ratio

(N Eg Coefficient of rotor torque = ngfﬁ

The angle of attack of the main rotor, ds and the rotor torque, Q,

may now be calculated in the following manner:

Ao CLI
0=yt 52 \ 5 (3-10)
c
q= J; (T.F.) oR (3-11)

Interference effects can exist when the downwash created by one
aerodynamic component affects the performance of another aerodynamic
- component. These effects can be described as changes in the local angle

of attack and the 1local velocity. Changes in the local velocity are
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usually small, however, and will not be considered here. The local

angle of attack can be expressed by the following equation:

A ocaL = @ +3-¢ (3-12)

where a is the remote wind angle of attack with respect to the X-axis

i is the geometric inclination of the aerodynamic component being
evaluated with respect to the X-axis

£ is the aerodynamic interference angle.

For helicopters, aerodynamic interference is produced mainly by the
main rotor downwash. The downwash velocity of a rotor varies with time
as well as position and the result is an exceedingly complicated situa-
tion to evaluate. Fortunately, measurements of 1ift and drag for a
single rotor helicopter as reported in Reference 5 show that inter-
ference effects between the main rotor and fuselage and the main rotor
and horizontal tail are negligible.

The interference between the front and rear rotors of a tandem rotor
configuration is more significant. Tandem rotors will not be evaluated
here, however, Reference 5 contains charts and procedures for calcu-
tating this interference effect.

The downwash interference angles, ¢, are usually small. They can be

calculated using equation (3-13).

€y = = K (TAN a. - ) (3-13)

1R

Ti>

where K is the rotor interference factor and is usually equal to 1.9 for

single rotor aircraft.
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The above calculations have revealed additional information about
the trim condition of the helicopter. A second approximaticn of the
fuselage trim angle of attack can now be made. First a mathematical

relationship is obtained between « and C . This information is
FUS M FUS

then plotted against experimental data far the same two factors. The

intersection of the two curves will yield the trim value for ap

us-
Use equation (3-14) to find the relation between «o and C .
FUS MFUS
ebQZMs
. i} [lx L - 12 D+ 5 (a; + a. - 1)]F + Qo [1X Sa(i-eg)]
FUS - (IX D) + ]Z L)F - Qo (]X Sa)T
o go A i
e !Fuxsw LXFU§ FUS1 Sa).  GFus (3-14)
The only two unknowns in eguation (3-I4} are « and C The
FUS gﬂs
sult will be that some constant times CM will equal Yeyge Plot this

FUS
against the experimental data for the values such as shown in Figure

10.1-11 [Ref. 5]. The intersection of the two lines will be the new

approximation of Ueys

The recently obtained value of « g can be used to gain a second

FU

approximation of C, s CD , CN , and CM by using the M
“FUS FUS FUS

TIRAL
ey figure again.
A refined approximation of the fuselage forces can be gained by

using equations (3-1) and (3-2). The fuselage pitching moment can be

calcuiated from equation (3-15).
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1ail Rotor Calculations

The yawing moment of the fuselage is calculated next.

[ S

(3-16)

9% Ay_  Trys

=C
FUS N FUS

FUS

The tail rotor thrust must be equal to the yaw moments produced by

the main rotor and the fuselage. Thus:
TR=—=7, (3-17)

The coefficient of tail rotor thrust can now be obtained.

(C_L_') N
o/ T (T.F.)o ™ (3-18)

Knowing the values of 8, TR, IR and M; (calculated previously) plus

R
C. ' '
—5— and assuming (aC)TR = (Q, use the appropriate charts in [Ref. 5]
TR
to find:
()] ()
- , k] ‘\ ’ (0‘75)
5 o/J;g 01 V9w R TR
': compute:
‘ ' ! i
= (h_.) = [(?Q_) + 3_02. (C_L_) 2] (3-19)
| o' 1R 0lgy W\ TR
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The drag of the tail rotor can now be calculated:

C i
_ |
Drg = [~5- (T.F.) o] I (3-20)

The only tail rotor derivative needed is:

[ U S

ab

5-0_
TR _ (T.F. o) ( o )
3uUyp QR R 3 / 1p (3-20a)

The last term in equation (3-20a) is obtained from the appropriate

C '
chart of Reference 5 knowing g, My, and (—L-) .
T o /1R
The characteristics of the horizontal tail plane are determined from

the following equations:

O = dpys * Epyg (3-21)
ay = a + LT - eg (3-22)
C = arar (3-23)

2

C. = 6: L
o, = o, " 7AR) . (3-24)

!

: L, = cLT % Sy (3-25)
07 = &30 Sy (1-26)
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Forces are summed in the X and Z directions to obtain a new approxi-

mation of the main rotor lift and drag. The following equations are

used:
Ky = W = Leyg (amegyg) = Ly (aeq) * Dpyg + Dy + Dy (3-27)
Kz = Dpyg (aepyg) + Dy (ameq) + Dyg (ameqp) + Lgyg + Ly - W (3-28)

where K; represents the total drag being developed by the helicopter and
Ko represents the total Tift.
The 1ift of the main rotor can now be approximated from the follow-

ing two equations:

Le = Ky o = Ky (3-29)
La = Kl
Ok = T2 (3-30)

The angle of attack used here is from equation (3-16).
Equations (3~5 through 3-9) are used to obtain better estimates for
@) (&) () (@)
o] o o c

0.1 0.1

The steps following equation (3-9) to equation (3-25) should be
repeated until the trim values converge. This should only take one or
two iterations. The result of the above calculations will yield the

final trim values of the helicopter at one airspeed. These values are

needed for the further calculation of the stability derivatives.
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E. CALCULATION OF ROTOR ISOLATED DERIVATIVES

Isolated rotor derivatives are defined as those aerodynamic para-
meters for the rotor that change with respect to tip speed ratio, p,
rotor angle of attack, a., and blade section pitch angle at 0.75 radius,
6.75. Theoretical values of these derivatives are plotted on charts and
presented in Reference 5 as functions of g, 8, y, and .

These charts were derived for rotor solidity equal to 0.1. If the
actual rotor solidity for the helicopter being evaluated differs from
0.1, then corrections should be made to the values obtained from these
charts.

The parameters which must be corrected for solidity are those deal-
ing with p and a.. The correction factors and equations to use when

correcting for solidity are listed below.

Solidity Corrections for (u) Derivatives

c. ! c ' C [ |
_L_ _L_ i __L_
9t _Ks ) + 23 Sy PR ) (3-31)
1 1 -_— R
ou |L o Jo1 ¥ "o % Jo.1
where
Ado=0-0.1 (3-32)
Kl - 1 c T
L 3-33)
1+ Acg 3( g ) (
% §o.1
( )O 1 denotes stability derivatives for rotor solidity o = 0.1.

These values can be directly obtained from the charts of
Section 7.5. in Reference 5.
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C' C,'
‘ o s ; Syl -85, X ; }
+ - -
R - ISP G o
i (3-34)
1
i where
c ]
L
C,' A(—
_ Ao g L _ (o} -
Ko = 2% | o (-3—) TR (3-35)
' da da da
93 _ (934 93 -
oA A A\
o - (%2 + K (B2 (3-37)
ay 9 0.1 ao'c 0.1

Solidity Corrections for (ac) Derivatives

C ] C 1
2() [a<—é—>]
aac = K 8ac (3-38)
0.1
1 C ] C ]
D D ! L
X5y s[*’(—&')] pag Ly [3< o >] | (3-39)
da (B o, "0 g 9.4 g1
93; _ 9a, -
da_ Kl(auc) (3-40)
! 0.1
' A L 9A
= k() (3.41)
ao'c ao'c 0.1
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Obtain the following y derivatives from Section 7.5 of [Ref. 5]:

C Cn'
L D
aa 2 A (")
1 A > i ] ’ oy
! and the a_ derivatives:
] 1
L D
0 3 B 9a
: 8uc aac 8ac aac
I

F. CALCULATION OF THE LOCAL DERIVATIVES

Using the values obtained from the charts in Reference 5 and cor-
rected for solidity, if necessary, calcultate the following dimensional
derivatives for the main rotor. These local derivatives are dimensional
expressions of the change of local forces or moments of various compon~

ents with respect to the local wind conditions.

C i

L
aL (—)
e _F_ (T.F.)o] [ ol ] 1b-sec -
u derivatives: auF = [ a R ETY —ft (3-42)
- CD'
a_D_F - [LT.F.)U B(T)J 1b-sec (3-43)
3uF QR | 3u ft
i 9dip - 1 _a_q_,_ rad-sec (3-44)
' duc QR 3w ft
g M
| HUBF {QDQMS} [dalF] b (3-45)
= Y -sec -
r Sug 2 dug
r
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L
s Se CE
ap derivatives: 53; =  [(T.F.)o] :—EEE:] 1b/rad (3-46)
9
W 90¢ (5
5;; =  [(T.F.)o] - aac | 1b/rad (3-47)
M 2
HUB; [ebQ MS] 2a, Tb-ft .
auF 2 da rad
c
c
da,
. . . A 34 1 -
q derivatives: aqF = [yQ(l.883 - pz)] sec (3-49)

The isolated derivatives for the fuselage are found next. Using the
figure referred to in Section D and the trim values for the fuselage,

determine:

aC 3¢ aC
Leus Drys Meys
dagyg ey ddp g

These values are used next to compute the local derivatives of the fuse-

lage. These are dimensional derivatives.

aL

! ug,g derivatives: auFUS - vg_ Leus 1b;iec (3-50)
; FUS °
:
! a0 -
1 = & Dy Toosec  (3-51)
‘ FUs 0
' M
U8 o 2 My Bsec  (3-52)
FUS 0
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o aC
“FUS derivatives: aLFUS _ LFUS b
Sa. - 9o hy 5a rad (3-53)
FUS FUs 2%y
i 3D 3Cp
= FUS FUS 1b
_FUS - oA ( ) 1b (3-54)
| 3pyg Xeus  \39pys ra
§
aC
Mrus . 4 ( MFUS) 1b-ft (3-55)
dagyg Xpys \opys rad

The derivatives for the horizontal tail are obtained using the
charts and procedures in Reference 7. Determination of the local de-
rivatives for the horizontal tail can be made using the following

equations:

u derivatives: aL

—

1b-sec

a darivatives:



https://www.abbottaerospace.com/technical-library/

FErrmLrnires Ay 1R A PN L

G. CALCULATION OF THE TOTAL STABILITY DERIVATIVES
The total stability derivatives can finally be determined. The
calculations are based on the isolated and local derivatives found in
the previous sections.
i Some angular derivatives needed for the calculation of the total
1 stability derivatives are as follows:
da, 3a
FUS . T - g D S\ - :
; da = 5 - 17Ky (l u 8ac) (3-60)
a.__.uFUS = 3_01 = - K_FI(J\_-?_}:_ (3-61)
au du Vo H oy .
da _ . AL 3 ; i
el KRF( v au)R (3-62) |
Jda
F 1 A
— = 1-K (1- _— —) (3-63)
il RF H 3UC R
The X-Force Derivatives '
(a) Xy (Xu)F X Jpys * (XU)T (3-64)
where
aL ab
F F :
(X) = —a~- >— (3-65) ,
ue auF auF 1
K = :‘Lﬂs‘ (a=egyg) - ;?.'F_Ué
Y Fus Yrus FUS
; . 2%Fus [aLFUS (oo - ?_‘)ﬂ_s_] (3-66)
A 3u Bag e FUS) dag ¢ §
X aL ad du aL 30
! 2T ogmeny - — T T (geeny - —L -
,' (xu)T - duy (a=e) duy du [aaT (a=eq) auT] (3-67)
! 62
]
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(b) X = (X ) + (X)) + (X)) (3-68)
w WF Y Fus ¥y
where
alL ab
1 F F
(X)) =g— (—a-—+L) (3-69)
i wie Vo dap darp F :
da aL ab
1 FUS FUS FUS
(X.) =—( )[( + D )(a-e ) - == L ] (3-70)
W eus Vo da 3“Fus FUS FUS auFUS FUS {
3o aD
- 1 T aLT , _ .1 _
K= v~ (W) [aT (aveq) = 55 * Lr] (3-71)
T T T
The Z-Force Derivatives
(@ Ly = @) @pys * (2 (3-72)
where
(aLF a0p )
(Z) = -\e—a+—u (3-73)
u F auF auF
H
@) = _[ZLFUS . zDFUS (G-EFUS)}
Y rus Yrus  9YFuUs
du aL b
FUS [ Fus , Orus ]
- (a=~¢ ) + D (3-74)
du aaFUS auFUS FUS FUS
i aL aL da
: =l T, _T T e
% (Zu)T - [au * dag au] (3-75)
\ H3
| !
|
!
f
? 63
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®) Z,=@) + @)

where

+ ()
us wr

aL
) =- V—l' (au_F)
F 0 F

i g e L i i e

| B B e B o S e

2y =-.L (aLFUS) (a“Fus)
Wrus Voo \dopyg/ \ da
2y =- L (iﬁ)(a_“_T)
w T Vo aUT o

The Pitching Moment (M) Derivatives

(@ M= 00 - @) T @ T
oMoy O THUB
PO 2 T By T B T T
where
S
TR TR TR

(Z) = - [:DTR _ a:TR (:DTR)] (“'ETR)
1R “TR u TR
(b) M o= (X )] - (Z)1 - (Z )1
W w F ZF w F XF w T XT

M

) (Zw) ! ¥ VE_ ( da

Meys HUBF)

Ja

(3-76)

(3-77)

(3-78)

(3-79)

(3-80)
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T T T L P W ="
= -1 -
(ZW)TR T Vo “TR (3-84)
aM
=2 1,2 -] (aalF —Eﬁ) (3-85)
q wr XT ZF 3qg °F 3q
aL
1 T
e (3 -
65
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IV. SOLUTION OF THE CHARACTERISTIC EQUATION

In Chapter II it was shown that the 1longitudinal dynamics of the

helicopter's motion could be described by three equations. These equa-

o e ol

tions deal with forces in the X and Z directions and a moment, M, about
the pitch axis. Knowing the stability derivatives, as outlined in
Chapter III, the stage is set for determining the motions that charac-
terize the helicopter's response to these forces and moments.

The pro »dure for obtaining the aircraft's modes of motion lies in a
simultaneous solution to the three equations for longitudinal motion. A
determinant is ideally suited for this purpose. What is sought is the
aircraft's response to gravitational and aerodynamic forces and moments.
Therefore, the stability derivatives are evaluated and the three equa-
tions set equal to zero and solved.

The determinant in question is derived from the two force equations
and one moment equation that have been used for longitudinal dynamics.
For the case of studying the helicopter's natural response (i.e., no
forcing functions) the determinant is set equal to zero and the modes of
motion are then found. If the helicopter's response to a given input is
desired, then the determinant is set equal to that input (the forcing

function) and solved. An example of such a forcing function is the step

input of cyclic or collective movement.
The determinant derivation, from Reference 6, starts with the lin-

earized equations of motion:
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g U=-w cos T + AX (4-1)
Yo -¥v=-wosint +az (4-2)
g g

B 6 =AM (4-3)

AX and AZ are the forces arising from aerodynamics in distrubed
flight and M is the aerodynamic moment in disturbed flight. 6 = q.
It was shown in Chapter II that the changes in forces and moments
arising from small disturbances could be written as Taylor series ex-

pansions. Thus a substitution for AX can be made as,

JOK L BX L 0K L RN 9K
“uYtawYtag 9" 3E Bt s,

X w aq 3B,

90 (4'4)

where B, and 8, are cyclic and collective pitch control terms,
respectively.
Using a shorthand notation of gé = Xi, equation (4-4) can be

written as:

axX = Xu u + Xw W+ Xq q + XBl B, + X, 65 (4-5)

8o

The Tinearized equations (4-1), (4-2), and (4-3) can now be written

as:

!'- - - = 4=

3 U X Ut X xq g + wé cos T XBl B, + Xao 8o (4-6)

-7 u+¥w-7 w-1 q - YO +wosint=12, B, +Z. 8 (4-7)
u g W q g B, " "8y °

- Mu u - Mw w - M; w + B6 - Mq q = MBl B, + MBO 8o (4-8)
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The resulting equations are linear ones with constant coefficients,
and can be written in determinant form with Laplacian notation for
compactness. With this notation S represents d( )/dt. The resulting
determinant is set equal to zero when the natural response of the air-
craft is to be examined. (B, and 84, the cyclic and collective pitch
inputs = zero.) It should be noted that Zq is always equal to zero and
that MQ and Xq are negligibly small so that the final form of the

stability determinant is:

S - Xu -Xw W, COs T

- Zu S-Zw -VS =0 (4-9)
- - 2-

Mu Mw S Mq S

Note: 1 1is usually a small angle such that cos 1 = 1. For com-
patibility of units, velocity must be in feet per second. To convert

knots to FPS, multiply by 1.6889.

A. THE CHARACTERISTIC EQUATION

The results of the determinant generated in the above manner is
called the characteristic equation and in general is a quartic equation.
It will be shown that in a hover the characteristic equation is reduced
to a cubic equation.

The characteristic equation has the fcilowing form:

AS* + BS3 + CS2 + DS + E=0 (4-10)

where the value of the coefficients, A thru E, are determined by the

determinant cross-product.

B el 2 A B AN ) R = s e —-—-——-—-———1
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Solving the characteristic equation will yield four roots. In
classical fixed-wing aircraft longitudinal analysis, the solution ac-
tually yields two sets of complex roots. These sets of roots describe
two sinusoidal motions of the aircraft which are distinguished from each
other by their periods. The longer period motion is called the phugoid
and the shorter period motion is called the short period.

The fixed-wing characteristic equation quartic can also be repre-
sented by the product of two quadratic equations. The coefficients of
the two quadratic equations contain terms which define the damping
ratio, {, and the response frequency, w, of the modes of motion associ-

ated with the quadratic equations.

ASY + BS® + CS2 + DS + E = |52 + 2LowS + wDZ{

|

2 ] -
3%+ LgpugpS *uwgp (4-11)

where the subscript P defines that motion associated with the Jong
period motion of the aircraft, or phugoid, and the subscript SP ¢ used
to denote the short period motion.

The phugoid mode of motion is one in which the aircraft's angle of
attack remains essentially constant while airspeed and altitude change
as aircraft kinetic energy (airspeed) and patential energy (altitude)
are exchanged until the aircraft's motion dampens out at trim airspeed
(when the system is convergent) or until the aircraft departs controlled
flight (if the phugoid has a divergent nature) (see Figure 4-1). The
respective velocities and altitudes at points 1, 2, and 3 would be in-
creasing or decreasing depending on whether the aircraft's oscillation

was damped or divergent as shown in Figure 1-2.
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Figure 4-1. Phugoid Response

For helicopters the period of the phugoid is typically long, on the

order of 30 seconds while the short period mode of motion is a heavily
damped one in which the aircraft's velocity remains constant. Since the
short period is heavily damped, its period is typically on the order of
one second.

The aircraft's resultant motion can be compared to a spring-mass-
damper system which has two springs and two dampers. Keeping this in
mind, £, the damping ratio, is a measure of the amount of damping in the
system. Insofar as the short periocd has a more heavily damped motion,

it follows that the value of CSP will be higher than that for §P'

i bl B
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B. HELICOPTER RESPONSE IN A HOVER

Unfortunately, the helicopter's modal response cannot be given the
same clear, consistent physical interpretation as that for a fixed-wing
aircraft. One reason for this becomes immediately apparent when hover-

ing flight is considered. For a conventional fixed-wing aircraft all

< . gl i

phases of flight are conducted with some forward flight velocity. This
is obviously not so with the helicopter.

Suprisingly, the characteristic equation for a helicopter in hover
is a cubic equation, not a quartic. The reason for this is found by

examining the Z-force equation in the determinant:
z S-Zw VoS =0 (4-12)

Vo equals zero in a hover, and if Zu equals zero for hovering flight
(as it frequently does) the vertical motion is immediately decoupled
from the pitching motions and fore and aft motions. As a result, the
vertical motion is entirely dependent on Zw and is usually a heavily
damped subsidance motion since Zw is usually a large negative number.
The assertion that the vertical motion of the helicopter in a hover is
very dependent on Zw is borne out by the fact that a helicopter's
vertical motion is known to be very responsive to vertical qusts of wind
and to collective pitch inputs.

Once the solution to the Z-fgrce equation is known (S = Zw)’ it can

be removed from the determinant and the system of equations can then be

reduced to a 2 X 2 determinant.
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S-Xu W
=0 (4-13)
-M SZ-MqS

and the resulting characteristic equation will be a cubic:

3 . 2 = -
S2 - (K, + M) S2 + X, MS + MW =0 (4-18)

The solution of the cubic equation will generally yield a negative
real root and a positive complex root pair. The negative real root
indicates a stable convergence and is principally due to pitch damping
of the rotor whereas the positive pair of complex roots indicates un-
stable oscillation and is due to the coupling of the pitch and longi-
tudinal velocity by the speed stability derivative Mu'

For an articulated rotor, the real root (which indicates the short
period mode) typically has a time to half amplitude of Ts = 1 to 2
seconds. The long period mode is represented by the oscillatory root
and has a period of T = 10 to 20 seconds and since it is a divergent
motion, a time to double amplitude of T, = 3 to 4 seconds (Ref. 10).

Although the phugoid motion 1is unstable, the period and time to
double amplitude are sufficiently Tong for the pilot to observe the
helicopter's reactions and make necessary control movements to maintain
control of the aircraft.

Hingeless rotors have a higher degree of pitch damping than articu-

lated rotors. This high degree of damping serves to greatly increase
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the magnitude of the real root and it also increases the period and time
to double amplitude of the oscillatory mode. For hingeless rotors the
time to half amplitude is typically 0.2 to 0.5 seconds, while the
oscillatory phugoid mode has a period of 10 to 20 seconds with a time to

double amplitude of 10 to 15 seconds.

C. APPROXIMATION OF THE SHORT PERIOD DURING HOVER

The initial response of the helicopter to gusts is primarily that of
vertical and pitch acceleration, with little longitudinal acceleration.
Since this analysis assumes perturbations from steady, level flight, the
Tongitudinal degree of freedom can be neglected in order to approximate
the short period mode. (It should be noted that the short period mode
is heavily damped and is characterized by near zero velocity change, so
that the neglect of longitudinal acceleration is reasonable for this
analysis.)

With this assumption, the stability determinant is reduced to:

M, 5-M
q =0 (4-15)

and the characteristic equation becomes:
(s - Mq) (S-Zw) - va =9 (4-16)

It has been explained that in hover the pitch and vertical motions

decouple and the two solutions of the characteristic equations are:

S=12 and S=M (4-17)
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As a check on the validity of this assertion note the following
comparison in Table 4-1 between stability derivatives and roots from the
solution of the stability quartic for three different helicopters. The

comparison shows generally good correlation.

TABLE 4-1. Comparison

Zy Ma ROOTS
B0-105 | -0.3317 | -3.3972 | -0.331, -3.4521
CH-530 | -0.298 -0.499 -0.2934, -0.8232
" |ou-s -0.3404 | -1.7645 | -0.3544, -1.8794

The helicopter has neutral static stability when disturbed by per-
turbations in pitch or roll. This is because no moments are generated
directly by these motions to move the helicopter back to or away from
its equilibrium position. However, the helicopter in hover does possess
positive static stability when disturbed by longitudinal or lateral

perturbations of wind velocity.

D. HELICOPTER RESPONSE IN FORWARD FLIGHT

As the helicopter departs hovering flight and transitions to forward
flight, new forces come into existance which start to change the stabil-
ity picture. These forces arise from the increasing dynamic pressure

being built up on the aerodynamic surfaces of the helicopter. As a
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result the dynamics of the helicopter in forward flight are different
from those characteristics exhibited in hover. The forces and moments
that act on the helicopter are contributed by the main rotor, tail
rotor, fuselage and tail surface aerodynamics, and gravity.

A stab.,lity derivative that arises from forward flight is Mw’ the
pitching moment due to angle of attack perturbation. This derivative is
usually equal to zero for the hover condition. It has an unstabilizing
effect on the helicopter's motion for the following reason: As the
helicopter accelerates, the advancing blade experiences increased
dynamic pressure. This increase in pressure results in a change in the
blade angle of attack which produces a lateral moment on the rotor disc
(toward the retreating blade}. The moment thus generated is propor-
tional to forward velocity. Because of the gyroscopic effect of the
rotating disc, the tip path plane will respond to this moment after 90
degrees of movement. Therefore the rotor disc will be tilted aft. The
angle of attack increase results in a pitch up moment of the aircraft
which further increases the angle of attack on the rotor system. There-
fore the dynamics of the rotor are a source of instability for the
helicopter in forward flight.

To counter the angle of attack instability of the main rotor in for-
ward flight, a horizontal tail can be incorporated on the helicopter.
The forces and moments produced by the horizontal tail are proportional
to forward velocity so that they are approximately zero in hover and
increase with speed. The horizontal tail will have a stabilizing in-

fluence on the helicopter's motions in much the same way as a horizontal

tail on a fixed-wing aircraft. Since the moments produced by both the
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main rotor and horizontal tail are proportional to velocity, their
relative contributions to stability are actually independent of speed.

As can be seen, Mw is influenced by two opposing sources, an un-
§ stable contribution from the rotor and a stabilizing contribution from
the horizontal tail. Without a horizontal tail, the dynamics of the
helicopter in forward flight are characterized by two stable damped
motions (from the negative real roots) and an unstable oscillatory mode
(from a positive pair of complex roots). In this configuration the
; flying qualities are degraded due to the angle of attack instability.
| The dynamics of the helicopter in forward flight can be changed by
the addition of a large enough horizontal tail such that static

stability is achieved. For the case of a large horizontal tail, the

pitch and vertical real roots are transformed into two oscillatory roots
with a short period and high damping. The latter motion is similar to
that found in a fixed-wing aircraft.

In actual practice other considerations must be taken into account
which may eclipse the goal of achieving fixed-wing-like dynamics in
forward flight. One such limitation is that a horizontal tail which is
large enough to counter the unstabilizing influences of the main rotor
i may simply be too large for weight or drag considerations. Another
factor to consider is that tail effectiveness is reduced at Tow speeds

due to interference with rotor and fuselage wakes. In spite of these

problems it should be noted that almost all single rotor helicopters do

have horizontal tail planes because of the improvement in flying quali-

ties that the addition of this component provides.

a — —— ——
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E. APPROXIMATION OF THE SHORT PERIOD IN FORWARD FLIGHT

The assumptions made for the analysis of the short period motion in
a hover are also valid for the approximation of the short period motion
in forward flight. Of course the characteristic equation (4-15) is not
solved so readily because of the -MwV term. In a hover this term went
to zero, but in forward flight the characteristic equation must be

solved.
(S - Mq) (s - Zw) = va (4-18)

Typically, the short period motion of the helicopter is character-
ized by two negative real roots. This, of course, means that the short
period is a stable motion and is heavily damped. Because of the action
of the horizontal tail as explained above, certain helicopters do
occasionally exhibit a stable oscillatory mode, more in keeping with

fixed-wing dynamics.
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V. INTERPRETATION OF THE STABILITY DERIVATIVES

It has been shown how the individual stability derivatives can be
calculated knowing some basic data about the helicopter, and having
access to theoretical charts relating aircraft performance and response
parameters. An explanation of the characteristics of these derivatives
and their effects on the helicopter's motion is now in order. To begin
with it should be noted that since all airframe contributions are pro-
portional to airspeed, the fuselage and horizontal tail forces will be
equal to zero at zero flight velocity. This fact serves to simplify

certain calculations for the hover condition.

A. Xu = DRAG DAMPING

This stability derivative acts as a damping force. It will be

negative in sign. The interpretation of xu is that it represents an

increase in drag with an increase in forward flight velocity. Physi-

cally this is seen to be true because as forward speed increases the

thrust vector (and the rotor disk) must be tilted more forward to over-

come the effects of increased drag.

In relation to the dynamic motions, Xu has a weak effect on the

phugoid, but one which tends to make the phugoid more stable.
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B. Xy = DRAG DUE TO ANGLE OF ATTACK

Xw can be interpreted as the change in drag on the aircraft which is
brought about by change in angle of attack. It is usually of small
value and does not have much influence on either the static or dynamic
characteristics of stability.

Xw is usually very small or zero for hovering flight. For the
purposes of simplifying calculations, it can safely be assumed to equal

zero for the hover condition.

C. Zu = LIFT DUE TO VELOCITY

This stability derivative is always negative for fixed-wing aircraft
and corresponds to increased 1ift at higher velocities. (Remember, the
l-axis is positive downward.) This is not so for helicopters, however.
According to Reference 9, for helicopters Zu is negative at low speeds
but positive at high speeds. This is not especially significant except
at higher forward velocity where it might affect the dynamic divergence.
Zu is usually small for an articulated rotor.

Like Xw, Zu can be assumed to be equal to zero for the hover con-

dition and for the same reasons.

D. Zw = VERTICAL DAMPING

Zw acts as a damping force in the same manner that Xu does. It also
is negative in sign and occurs because of the verticai motions of the
aircraft. For a helicopter this is an important parameter, especially
in a hover where it describes the response of the aircraft to vertical
gusts. This stability derivative is nearly independent of airspeed for

the helicopter whereas it is proportional to airspeed for fixed-wing

aircraft.
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E. Mu = VELOCITY STABILITY ;

This parameter describes the pitch tendencies of the aircraft with
respect to speed changes. According to Reference 9, at hover and for

very low speeds, most helicopter configurations have Mu positive. This

T g,

| leads to a positive stick gradient. A positive value for Mu could lead
to oscillatory instability and it indicates the aircraft is sensitive to !
turbulence.

Mu changes sign at high forward fiight velocities. Negative values

of Mu lead to dynamic divergence.

F. Mw = ANGLE OF ATTACK STABILITY

Mw indicates the tendency of the aircraft to pitch up or down as
angle of attack is increased. A negative value of Mw is stabilizing as
it tends to return the aircraft to its previous pasition whereas a
positive value would be divergent in nature. Most helicopters exhibit
values of Mw that are neutral or positive. A positive value will lead
to dynamic divergence in forward flight. Seckel claims that the center
of gravity position can have an effect on the values of Mw and conse-
quently on the resultant stability characteristics of the aircraft. If
the fuselage and horizontal tail contributions are stable with respect
to angle of attack, moving the center of gravity forward will make the
aircraft more stable and aft less so. Conversely, if the fuseiage and
g horizontal tail have destabilizing tenencies, then the opposite will
Jif ' occur.
: According to Reference 10, Mw receives an unstable contribution from

the rotor and fuselage and a stable contribution from the horizontal

-y - —
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tail. Mw is the third stability derivative which can be assumed to be
equal to zero for hover calculations with no loss of accuracy in the

results.

G. Mq = PITCH DAMPING

This derivative is negative and is a very important one for response
to control deflection and dynamic stability. Most helicopters require
some augmentation of this angular damping for good handling qualities.
The numerical value of Mq should be less than -0.5 [Ref. 9]. Values of
-2.0 are better, but the degree of improvement decreases for values less

than -2.0.
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VI. ANALYSIS OF RESULTS

As can be seen from the sample problem, Appendix A, the stability
characteristics of the helicopter under investigation consisted of a
pair of damped oscillatory roots, a divergent real root, and a conver-
gent real root. These characteristics differ from the low-speed
response for the same helicopter. At advance ratios of 0.1 to 0.2 this
aircraft's response was identical to that expected for helicopters in
low speed flight, namely two heavily damped stable roots and a pair of
divergent oscillatory roots. Thus, the stability characteristics of the
helicopter have changed at high speed.

The resulting motion of the helicopter at high advance ratios cannot
be accurately predicted, however, as can be seen from Table 6-1. This
table shows tne different response modes of five helicopters at various
ccnditions of airspeed and center of gravity location. Some interesting
observations can be made from this table.

The response of some helicopters may not change at all with airspeed.
The CH-53D 1is an example of this. Data obtained from Reference 11
indicates the CH-53 retains the response mode characteristics associated
with hovering flight out to at least 140 knots. Different responses are
exhibited by other helicopters. The OH-6 has a typical hover response
mode which changes into two damped real rocts and a damped oscillatory
motion prior to 100 knots. The B30-105 also changes from the hover

response at forward speed but not until an airspeed greater than 100

[v )
[



https://www.abbottaerospace.com/technical-library/

T

R

it N A N T

TABLE 6-1. RESPONSE MODE COMPARISON
{
j
’ AIRCRAFT ROOTS
‘ HOVER 100 KNOTS 140 KNOTS
l CH-53D .1139 + 0.4705 0.1648 + 0.3097 0.2538 + 0.2769
-0.2934 -0.3374 -0.2793
-0.8232 -1.3822 -1.7994
HOVER 100 KNOTS 130 KNOTS
0516 + 0.4658 | -0.0192  0.3186 | -0.1027 + 0.3729
-0.3544 -1.0092 -1.0033
-1.8794 -2.6212 -2.8293
HOVER 100 KNOTS 145 KNOTS
.0188 + 0.4333 0.2709 = 0.4673 1. 2449
-0.331 ~0.4040 0.3999
-3.4521 -4.7375 -0.3189
-5.9681
HOVER 100 XNOTS 120 KNOTS
(MID C.G.)
1685 £ 0.3535 | -0.0060 = 0.2820 | -9.0211 + 9.2392
3577 +0.1527 | -0.9653 + 1.0150 | -0.9354 = 1.4882
(AFT C.G.)
0.0220 + J.2880
-}. 372G + 0.7692
HOVER 100 XNOTS 140 XNOTS
(AFT C.G.)
L1205 +« 3.2617 0.J0089 + ).2666 -0.0337 £ 9.2051
.4323 + 3.1989 -0.7179 = 0./212 -). 7342 - 1.834@8
23
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knots and then the response is represented by four real roots, two
convergent and two divergent.

Still other examples of stability can be seen with the UH-1H and the
AH-1G. Both of these helicopters have stable oscillatory periods
typical of the response of a fixed-wing airplane. Of interest here is
the change in response with change in center of gravity position at 100
knots. Moving the center of gravity can have a profound effect of a
helicopter. For both the UH-1H and the AH-1G, moving the center of

gravity aft has a destabilizing influence.

34
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APPENDIX A
SAMPLE PROBLEM

MAIN ROTOR
! R =24 ft c =175 ft
i Q = 29 rad/sec a =5.73/rad
b =4 MS = 85.4 slug-ft
e =0.5ft I, = 1200 slug-ft?
8, = -8° 1, = -6 ft
F
1 = -10 ft
Ke
FUSELAGE
W = 10,000 1bs AX = 60 ft2
I, =17,500 slug-ft? A, = 200 ft2
]FUS = 50 ft
TAIL ROTOR
R =4.6 ft TR = 5.73/rad
b =4 T, = -30 ft
TR
c =0.75 ft 12 = -6 ft
TR
i 8, = 0° i =0
} Q = 146.6 rad/sec
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HORIZONTAL TAIL

S =20 ft2 ar = 3.5/rad Airfoil = NACA 0015
AR = 4.0 ]X = =20 ft CD° = 0.02
T
i-=20 1, =0
} T ZT

The helicopter's stability characteristics will be evaluated at

Vo = 203 FPS and at sea level. Using the data suppliied for the heli-
copter, and the definitions listed in Chapter III or the program STAB

from Appendix B, the following values are determined:

pg = 0.002378 slugs/ft3 Qo = 49.0 psi
T.F. = 2,084,504 1bs a = 0.093
m = 310.8 slugs u = 0.292
QR = 696 fps MTIP = 0.805 '
VTIp = 899 fps
(T.F.)TR = 71,896 9R = g.207
(QR)TR = 674 fps Wrg = 0.30
(MT) = (0.783
TR
Use Figure A-1 to obtain values for C and C for u = 0.
Leus Orys FUS
CL = -0.005
FUS
c = 0.16
Deys
86
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-0.02

0.22

Peys 0.18 t

0.14

Rs
-0.04 4
C
Meus
-0.08 +

-0.12

0.020

C 4
Neus 0.012

v

0.004

16 -12 -8 -4 0 4

reys T DEGREES

Figure A-1. Fuselage Characteristics for the Sampie
Single Rotor Helicopter (Bs =0)
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Equations (3-1) and (3-2) yield the fuselage 1ift and drag:

L = -49 1b D = 470.4 1b

FUS FUS

Main rotor lift and drag are obtained from equations (3-3) and (3-4).

= 10049 1b D. = -470.4 1b

L F

F
The main rotor 1ift and drag coefficients are calculated from equations

(3-5) and (3-6).

C

[¢]

CD'
= 0.0473 < - -0.0022
Equations (3-7), (3-8), and (3-9) are used to correct these values if

the main rotor solidity differs from 0.1.

(CLI) (CDI)
Ao = -0.007 = = 0.0473 = _
s /4 5 /4 1 = -0.0021

Now use the appropriate charts in Reference 6 to obtain values for the

following:
a; = 0.0611 rad a. = -0.1222 rad
c
j = = §5°
3 0.0025 8 46 =5

Also use the charts in Section 5.3 of Reference 5 to obtain:

A = -0.045 ap = 2.3°

38
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i
The angle of attack of the main rotor and the main rotor torque are

calculated from equations (3-10) and (3-11).

5 a. = -0.1241 rad Q = 11632 ft-1b

The downwash interference factors for this configuration are KFFUS =

KFT = KFTR = 1.0 and the downwash interference angles egual 0.0312 rad-

jans from equation (3-13).

A relation between deys and C is needed to plot against the

M
FUS
‘ experimentally obtained fuselage pitching moment data. Equation (3-14)

will yield:

-0.0164 + 0.5911 C

¥eys = M

FUS

The point of intersection on Figure A-2 will yield the fuselage trim

angle of attack, -2 degrees or -0.0349 radians. Using this value use

Figure A-1 again to obtain the following new values for the parameters

indicated:

-0.0065 C -0.025

FUS FUS

(g}
1}

c 0.158 Cn 0.007

Deys FUS

Use equations (3-1) and (3-2) to recalculate LFUS and DFUS' Also use

equations (3-15) and (3-16) to determine MFUS and NFUS’ respectively.

L -63.7 1b M -3675 ft-1b

FUS FUS

= 464.5 1b N 1029 ft-1b

Fus
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Figure A-2. Superposition of the Calculated and the
Experimental Fuselage Pitching Moment Data
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Using NFUS and QF determine the tail rotor thrust and the tail rotor
1ift coefficient from equations (3-17) and (3-18).
L

c [}
T;o = 422 1b (—) = 0.0293
TR ° /1R

Enter the charts in Reference 6 to obtain additional tail rotor para-
meters, knowing the tail rotor 1ift coefficient. Blade twist = 0,

T = 0.8. Assume o, = 0.

2,

Equations (3-19) and (3-20) will yield a value for the drag of the tail

g =20.3, and M

= 0.0015
0.1

rotor. DTR = 28.288.
From the trim values obtained earlier and using equations (3-21)

through (3-26) determine the following values for the horizontal

tailplane.
a = -0.0037 rad CD = 0.0216
T
ay = -0.0349 rad LT = -12.7 1b
CLT = -0.1396 DT = 19.6 1b

Equations (3-27) through (3-30) will yield a better approximation of the

main rotor lift and drag.

L. = 10060 1bs D. = -515.2 1bs

F
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Use equations (3-5) through (3-9) to obtain better extimates for the
main rotor lift and drag coefficients. The final trim values of the

helicopter are:

y =03 (%) = 0.053
CD'

MT =0.8 (T) = -0.0026

o = 0.092 LF = 10060 1bs
8; = -8° DF = =-515.2 1bs

- RO = -
6'75 = -5 AF 0.045
CLI C 1
The trim values for = 5 and 9 g are used to enter the charts

in Section 7.5 of Reference 5 to get the nondimensional isolated deriv-

atives for the front rotor.

¢! Ch'
[M%)] [8<%>]
‘ = -0.02 ( = 0.014
ou F o F
3A - da, -
[8u] - = -0.05 EW ] " 0.17
c ' Cpn'
[a<%>] [a<—%>]
= 0.38 = 0.07
Ja da
c- ¢ SR
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Solidity corrections are made to these values, if necessary, using
equations (3-31) through (3-41).

Using the isolated derivatives just obtained, the main rotor Jocal
derivatives can be calculated. Computation is done by equations (3-42)

through (3-49). The following results will be obtained:

aL aL
Fo_ . 1b-sec F o 1b
a”F = -5.56 7 8aF 73666 v3d
3D a0
F _ 1b-sec F_ 1b
ju. - 38 Tw s, ~ 1970 vag
F F
da; Jda,
£ _ rad-sec Fo_
50 0.000244 —T aaF = 0.24
Mius Myus
F_ _ F_ 1b-ft
auF = 17.54 1b-sec aaF 17237 ad
Ja,
F - -
Fr 0.09881

Use Figure A-1 to obtain the partial derivative values of CL. CD’ and CM
with respect to a by obtaining the slope of the line at the trim value

of Teys (-0.0312). The following values were gbtained:
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ac

“fys _ 0.0005 _ 0.0287
aaFUS degree

radian

acD
FUS _ -0.0005 _ -0.0287
aaFUS degree radian
8CM
FUS _ 0.0058 _ 0.3323
au

FUS degree  radian

The fuselage

local derivatives can now be calculated using equations
{3-50) through (3-55).

The following results will be obtained:

aL ) aL
s = -0, 628 1225€C s = 280.8 12
FUS FUS
a0 30,
FUS 1b-sec FUS b
= 4,576 JD-sec - -g4.23 1B
auFUS ft aaFUS rad
M oM i
auFUS = -36.21 1b-sec aaFUS = 48848 l%sgi
FUS FUS

Values for the horizontal tailplane derivatives are calculated using the

previously obtained values for by and DT and equations (3-56) through
(3-59).

V]
—

aL
T 1b-sec T 1b
= =- v m— _— =
auT 0.1251 ft aaT 2430 rad
a0+ aD
r _ 1b-sec - - 1b
SU—T - 0. 1931 ———.‘ a'—"dT 7 07 Y‘_ad

34
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The tail rotor derivative is obtained from equation (3-20a) and is

a0 ]
; S8 = 0.1545 122sec
' TR

i KFT = 1.0 for this configuration and KRF = 0, therefore:

! 3“Fus _ du

T _ da _
| 5a = 30 0.685 50 0
bel ] a aa
Fus _ %1 _ F
m Rl 0.000513 5a 1.0

Equations (3-64) through (3-85) are used to calculate the aircraft total
stability derivatives. Alternatively, the computer programs in Appendix
B will simplify this process. XUXW can be used to determine the X-force
derivatives, ZUIW to find the Z-force derivatives, and MUWQ to find the

pitching moment derivatives. Values obtained by either method are as

follows:
X = -8.6318 Ib-sec M = -4 783 2£€
u ) ft "4 : ft
X = -19.075 Ib-sec M = 307.32 38¢
Tw ) ft W ) ft
7 - ib-sec - _7 sec-ft-1b
Z, 4.344 T Mq 17838.2 B —

= -375.41 Ab-sec

~
I
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MUWQ incorporates some additional relations which must be known if

equations (3-80) through (3-85) are being hand calculated.

Meys _ Meys  Mpys  Bapys
au auFUS 3“Fus u
M M M g
F_ F, F_F
u auF 3aF au
Meys _ Meys  3pys
aa 3“Fus a
Mue Mg s
F_ F_F
o aaF oo
Mus. Mg Muus ebO2M_  dal
F_ Fio .1 Foo, s ( F)
aq du ZF Vo du XF 2 aq

Divide the force derivatives by mass and the moment derivatives by
pitching moment of inertia (Iy) to form the stability determinant

equation (4-9).

S +.0278 0.0614 32.2
-0.014 S + 1.2079 =203 S =0
0.0003 -0.0176 $2 +1.019 S

The characteristic equation will be:

§4 +2.255 S3 - 2.2788 S3 - 0.0776 S - 0.0037 =0
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Solving the quartic equation will yield the following roots:

0.7843
-3.0049
-0.0172 + 0.0357

Therefore this helicopter has the characteristics of a heavily damped
root, a divergent motion, and a damped oscillatory motion.

The time to half amplitude of the damped root is:

= .69 _
T% = l:§TﬁEZ§| = 0.230 sec.

The time to double amplitude of the divergent root is:

- .69 -
Ty = 07843 - 0.880 sec. )

The time to half amplitude for the oscillatory mode is:

.69

t% = r:afﬁi7§| = 40.12 sec.
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WORKSHEET FOR STAB

STORAGE PARAMETER VALUE STORAGE PARAMETER VALUE
01 b 4 R 696
02 c 1.74 o = B¢ 093

. be .
_ v
03 R 24 b= .2917
04 Q 29 m= A 310.8
2.2 :
05 y 203 T.F 2084504
06 \ 10000 Y 6.5928
07 0 .002378 Vp = QR 899
vy
08 I, 1200 My = v 805
2
09 a 5.73 eb*M, 71821
7
10 Vg 116.4 % = V2 49
11 M 85.4 T.F.o 193,526
T.F.o
12 e 5 5 278
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WORKSHEET FOR XUXW

STORAGE | DERIVATIVE VALUE STORAGE | DERIVATIVE | VALUE
aL
01 L 10060 18 aaFUS 280.8
FUS
aD
FUS
02 L -63.7 19 -84.23
FUS aaFUS
oL,
03 Dus 464.5 24 ur -.1251
30,
04 Ly -12.7 25 1 .1931
auT
oL,
05 Vo 203 26 — 3430
aaT
09 o -.0037 27 1 -7.07
3a
.
aa o
10 a- -.0349 28 —FUS . T | 000513
du u
aL Ju 3a
F i Fus _ 997
12 a0, 5.56 29 5 - T 685
A, b
14 —F 73666 32 —F 3.89
da ou
F F
30,
15 i 13570
%
aL
16 auFUS -.628
FUS
a0
17 auFUS 4.576
FUS
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WORKSHEET FOR MUWQ

STORAGE | DERIVATIVE VALUE STORAGE | DERIVATIVE |  VALUE
da da
Fus _ %7
00 Dr 28.3 28 S0 = .000513
da da
Fus _ %%
01 L 10060 29 0 = 685
3aF
05 Vo 203 30 ~ 0
aa
1 F
06 Xe 5 31 = ]
a0
07 ‘zF -6 33 -5%3 1545
R
08 Tx -20 34 17 -6
T TR
10 a-¢ -.0349 35 XuF -3.869
aalF X )
11 5 .09881 I8 W 18.633
ebQ?-MS 7
13 > 71821 41 U 5.574
a"'HUBF ;
20 17.54 43 u -1.635
auF T
8MHUBF ;
21 17237 a4 W -362.9
3(!F F
aM
22 auFUS -36.21 46 sz ~11.574
FUS
M
23 aaFUS 48848 50 ‘xTR -30
FUS
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APPENDIX B
COMPUTER PROGRAMS FOR THE HP-41CV CALCULATOR

. These computer programs are written for the HP-41 pocket calculator
and are intended to help streamline the process of finding solutions to
‘ some of the problems generated by stability and control analysis. Input
| values should be stored as indicated. When prompted for an input value,
the program will store that value in its proper storage register. When
the program is executed, the output values will be labeled by aipha
characters.

Worksheets are included as an aid to organize the input data for the

programs and for the case of the program STAB for recording output data.

A. STAB will calculate many helicopter parameters needed for further

caiculations. Both main rotor and tail rotor data can be calculated.

The equations solved for the output values are listed in the definitions

section of Chapter III. Input values and their storage locations are
shown in the worksheet for STAB. Space is provided on this worksheet to

: ) record the output values. Output values are labeled by alpha characters. ;

B. XUXW calculates the X-force total stability derivatives. Equations '
‘ (3-64) through (3-71) are solved with this program. The results are

displayed using -alphanumerics and are also stored for use in other

programs. See the worksheet for XUXW for the input parameters and their

proper storage location.
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C. ZUZW calculates the total stability derivatives for the Z-direction.
Input data is the same as that for AUXW . Output data is listed by

alphanumerics and is also stored for future use.

D. MUWQ calculates the total stability derivatives for the pitching

moments Mu, M

v’ and Mq. A worksheet with input parameters and proper

storage locations is also provided for this program. Output data is

labeled with alphanumerics.

E. CE finds the coefficients of the characteristic equation generated
by the stability determinant, equation (4~9). The program prompts for
the input values. It is important to note that the X and Z derivatives
must be normalized by aircraft mass ard the M derivatives must be nor-
malized by Iy. Also, velocity must be input in units of feet per second.

The output data will be the coefficients of the stability quartic,

equation (4-9).
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IR =S R RN

BleLBL "%
Bu
02 RCL 94
83 RCL @3
94 =%

8BS STO 14
a6 “0OR="
avel BL 091
88 RARCL R
89 ARAVIEW
10 STOP
11 RTHN

12 RCL 91
13 RCL e2
14 *

15 RCL 93
16 -~

17 PI

18 -~

19 STO o8
29 "SIGMA
21 XE@ a1
22 RCL 85
23 RCL 14
24 -

25 “"MUu=-
26 XEG 81
27 RCL 96
28 32.174

30 "MASS=
31 XEQ ©1
32 RCL 14
33 Xt2

34 RCL 097
35 *

36 P1

Y
38 RCL @83
39 X122

48 *

41 STO 195
42 “TF="

43 XE@ 9t
44 RCL 14
45 RCL @S
46 +

47 “VT="

48 XE@ G1
49 RCL 19
sa -

S1 “MT=-

LI N S A

TR

XEQ 91
RCL ©7
RCL 099
*

RCL @2
ah

RCL 63
4

YTR

*

RCL A8
s
“GAMMA="
XEQ 81
RCL 64
®t2
RCL ©81
*

RCL 12
*_

RCL 11
qe

2

s

STO 13
[ eb____ -
XEQ 61
RCL @85S
X2

2

s

RCL @7
oe

STO 16
e Q._- "
XEQ ©B1
RCL 15
RCL @8
A’

STO 17
“TFSIG="
XER A1
RCL 17
RCL 14
s

STO 18
“"TFS~0OR=

XEQ @81
" END -
a END .
END
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BleLBL ~xUM so RCL 15
Nn
51 -
b 82 RCL 12
~ @3 RCL @9 o2 ReL et
| 84 *
95 RCL 32 gg RCL @5
86 -
o2 sro as 2 fro 3
88 RCL 13 S8 RCL @3
99 RCL 1@ o
1@ *
| 11 RCL 19 69 RcL 1o
12 - .
| 13 RCL 23 6g RoL 19
14 * .
15 RCL 17 og Ret ez
16 - a
17 STO 326 gg RCL 23
18 RCL 16
19 RCL 1@ 23 fCL as
20 * .
2 5 e 2 g0 32
22 RCL 25 72 RCL 18
23 RCL 1@ iz R
24 *
25 RCL 27 73 RCL =7
26 -
27 RCL 283 78 RCL o4
28 * ' :
29 RCL 25 78 RCL 23
30 - 73 *
| 31 STO 37 g? §CL as
] Q .
i S 33 RCL 39
’ 35 ST+ 37 g; ;CL 28
36 RCL 37 gE + 3
X 37 RCL 36 pad
33 + 37 W=
3 - 338 XEQ @
\59 RCL és 89 --END--
49 +
i 98 END
41 ~XU=

. 42eLLBL @1
43 ARCL X
44 AVIENW
45 STOP
46 RTN
47 RCL 14
48 RCL @2

! 49 %
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OLoLBL meus 37 RCL 41
* @2 RCL 32 §§ ou=-
e 93 RCL @3 40eLBL 01
41 ARCL X
gg ECL 1z 42 AVIEW
2 tHs 43 STOP
| 88 STO 41 43 RN
o BeL 17 45 RCL 14
22 REr 1o 46 RCL @5
4?7 -
11 *
. 48 CHS
12 RCL 15 49 STO 44
L To 42 50 RCL 18
12 oL 15 S1 RCL 29
2 52 *
ig RCL 10 gz RCL @S
7’
18 RCL 02 SS CHS
S6 STO 4S5
g? RCL 18 57 RCL 26
= 58 RCL 29
22 RCL 28 Sa =
22 AT a2 60 RCL 85
25 RCL 42 o1 Cus
26 CHS 82 tHe
25 S5 4z 63 STO 46
28 RCL 26 6d RCL 45
| 54 RCL =8 66 RCL 44
-
! 31 RCL 24 S,
EE N 68 "ZW=
32 cHs 69 XEQ ©
34 STO 43 ;? éﬁgn"
35 RCL 42
36 +
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@leLEBL ~CE" ca RCL @2
@2 “Hy=7-
@3eLEBL @O1 gg 5CL a3z
64 PROMFT 3¢ il oo
ﬂ 2 B 58 RCL ©9
| 96 STO 61 58 RCL
4 ar nw=c 60 XEQ B2
| 98 XEQ B61 60 xEQ 02
89 STO B2 61 RCL o8
19 “Zu=2- 62 R 2
11 XEQ &1 63 * -
12 STO @3 &3 CHs
13 “2W=2" &3 32.
14 XEG @1 5 -
1S STO o4 gg §CL as
R %3 210 10 \
18 STO @S 78 RCL @3
- P 71 RCL 86
19 “MW=? 71 R
20 XEQ 91 ‘ .,
21 STO 86 %3 ECL a1
' 22 apaTal 75 ST+ 1@
23 XEQ 81 73 ST+ 18
24 STO B7 75 RCL o1
2S5 “YEL=7?" 77 RC ;
] 26 KEQ@ 91 7 _
27 STO @s ;3 ECL a4
28 RCL @i 30 ia
29 RCL B84 81 8T~ 19
39 + 2
321 RCL a7 gi ECL a3z
22 + -
33 CHS gg 5CL 95
34 -B=" °
3SeLBL 82 Sé gg: ig
35 ARCL X 35 RCL
37 AvlEw 98 XEQ@ 92
38 SIhP 91 RCL B3
2o ReL 92 RCL ®@s
49 RCL 094 2R
41 RCL ©1 33 %o 11
42 + T 1
3 S
) 434 * 2o X
1 - ~ 45 STO @9 27 _
i 2 5 g 2 5Ll
' 47 RCL @1 29 RCL_
' 48 * 100 32.2
i 49 ST+ 92 1ol teo.
5% REL os 103 ARCL X
S2 184 AVIEW
. 19S “END"
53 ST- 93 186 END

. e ——
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*

STO 47
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RCL 066
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D=y
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a

Z3eLBL 91

ARCL X
AVIEW
STOP
RTN
RCL
RCL
N
STO 48
RCL 44
RCL @86
b

ST- 43
RCL 4%
RCL @3
Y
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ST- 43
RCL 00
RCL 85

RCL S0

ST+ 42
RCL 23
RCL 2%

RCL 21
RCL 31

RCL @95

ST+ 48
RCL 48
s MN: o
XEQ @91
RCL @8
XT2
RCL 4¢&

STO 4%
RCL @v
RCL 11

RCL 91

ST- 42
RCL 28
RCL &7

ST+ 49
RCL 2i
RCL 31

RCL 88
RCL ©5
ST- 42
RCL 13
RCL 11
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RCL 49

XEQ 91
“END*"
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WORKSHEET FOR STAB
STORAGE PARAMETER VALUE STORAGE PARAMETER VALUE
01 b QR
_ be
02 ¢ %~
=Y
03 R g o= R
- _N
04 @ m=3272
05 v T.F
06 W y
07 P Ve = QR
v
T
08 I M, = —
b TV
09 a ebQM
2
10 VS qO = 3§pV2
11 MS i.F.o
12 e T.F.o
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WORKSHEET FOR XUXW
g STORAGE DERIVATIVE VALUE STORAGE DERIVATIVE VALUE
“ aL
s 01 Le 18 5359§
‘ FUS
i aD
FUS i
q 02 L 19 __Fus |
FUs aaFUS :
oL,
03 Deys 24 5
3D
.
04 L 25 —
T auT
aL
05 Vo 26 o
N
a0
09 a 27 - 551
T
da o
. Fus _ 997
10 a-s 28 S0
atk IV oo
F Fus _ %97
12 @ 29 da 9
aL a0
14 555 32 535
F F
3D
15 —x
' 80'F
~ aL
| 16 auFus
% FUS
! . 30pys
: SUpys
i
|
!
i
' 109
]
'
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WORKSHEET FOR MuwQ

Pm TELHNICAI | IRRARY ——

[P WY

STORAGE DERIVATIVE VALUE STORAGE DERIVATIVE VALUE
aa da
Fus _ %91
00 DTR 28 3u  3du
ou oa
Fus _ %7
01 Le 29 50 - 3a
3uF
05 Vo 30 -
o
1 F
06 XF 31 Sa
aD
07 'z, 33 —553
TR
08 Ty 34 17
T TR
X
10 a-c 35 Ug
da;
F X
11 ‘-a—q— 38 WF
ebQZM
S z
13 > 41 Ug
Mg, ,
20 auF 43 ur
Mhug, ;
21 8dF a4 we
M
22 auFUS 46 ZwT
FUS
M
FUS !
23 3a 50 XTR

FUS
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