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ABSTRACT

This thesis presents an analysis of the longitudinal stability deri-

vatives for helicopter aircraft and is intended to be used as a resource

document for a helicopter stability and control course at the Naval

Postgraduate School.

Emphasis is given to the evolution of forces and moments on the

helicopter, calculation of the stability derivatives at high advance

ratios, derivation of the stability determinant and solution of the

characteristic equation to yield the modes of motion of the helicopter.
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I. INTRODUCTION

The primary interest of any aviator engaged in flight is control of

his aircraft. Without this, it becomes impossible tc maintain the air-

craft in a desired flight regime and consequently the flight is rather

abruptly terminated. With adequate control over his vehicle however,

the aviator is capable of successfully performing many various tasks to

include a safe final landing.

Historically, the development of the helicopter was hampered during

its early years of evolution because of the lack of understanding of the

factors which caused stability (or instability) and therefore adequate

control over the vehicle was difficult to achieve. This situation was

exactly similar to that of the early development of the airplane. It

was only when the principles of stability and control could be under-

stood that aircraft could be developed which would fly as the designer

intended them to fly and that helicopter development could progress.

Before the details of controlling the aircraft can be fully worked

out, some understanding of the aircraft's inherent stability must be

attained because these two factors, stability and control, are closely

related. Together they determine the flying qualities, or handling

qualities of the aircraft. The aircraft must have sufficient stability

to maintain a certain desired condition of flight and to recover normal-

ly from disturbing influences (wind gusts, for instance). Pilot work-

loaa is also a function of stability. Since adequate maneuverability is

a necessity, the aircraft must also respond properly to the pilot's

inputs.

6
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An expansion of the concepts behind aircraft stability will be dis-

cussed here so that they can be more fully understood and easily dealt

with when moving into the area of aircraft control.

A. EQUILIBRIUM

A helicopter is in a state of equilibrium when the vector sum of all

forces and moments on it are equal to zero. While in equilibrium the

aircraft will not have any tendencies to accelerate in either transla-

tional (no unbalanced forces) or rotational (no unbalanced moments)

directions. Thus the aircraft will remain in a steady flight condition.

If, however, forces or moments are introduced to upset this balanced

condition (via cockpit control inputs or wind gusts, for example) the

helicopter will experience an acceleration in the direction of the un-

balanced forces and/or moments. As can be expected from Newton's Second

Law, linear accelerations are proportional to the magnitude of the un-

balanced forces and the angular accelerations are proportional to the

unbalanced moments.

B. STATIC STABILITY

The static stability of a system is defined by the initial tendency

of the system to return to equilibrium conditions following some distur-

bance from equilibrium. If an object which is disturbed from equilib-

rium tends to return to equilibrium, the object has positive static

stability. On the other hand, if the object, upon being disturbed, has

a tendency to continue in the direction of the disturbance, then the

object is exhibiting behavior of negative static stability. Neutral

7
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static stability exists when the object has no tendency to return to

equilibrium or to continue in the direction of the disturbance.

The classic physical examples of static stability are shown in

Figure 1-1 rRef. 1]. Varicus tendencies of motion of a ball displaced

POSiTIvE STATIC STABILITY

ECIJILIBRIUM

TENDENCY TO CONTINUE
IN DISPLACEMENT DIRECTION

NEGATIVE STATIC STABILITY

EQUILIBRIUM ENCOUNTERED
AT ANY POINT OF OISPLACEMEN

NEUTRAL STATIC STABILITY

Figure >-1. Static Stability
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from equilibrium in a depression, on a hill, and on a level surface are

shown. It should be noted that positive static stability is the desired

response in most situations.

It should also be noted that there are quantitative degrees of

static stability. This has to do with the forces acting on an object

after it has been disturbed from the equilibrium condition. An example

will illustrate this point. A large ball in a shadow depression may

have a force of one-half pound returning it to the equilibrium position

while the same size ball in a very steep-sided depression may have a

restoring force of ten pounds. While both these systems exhibit posi-

tive static stability, the second is more positive and thus a more

stable system.

If a stability control system is to be incorporated into the heli-

copter then the magnitude of the aircraft's static stability terms will

be one clue to the amount of force the control system must have to be

effective. For example, if a system has negative static stability in

yaw, some control feature must be incorporated to allow the pilot to

keep the yawing motion under control. If the negative yaw static sta-

bility term is of large magnitude, then the control system will have to

have a great amount of power to control the tendency of the aircraft to

diverge in yaw. On the other hand, if the stability term is only

slightly negative, then the yawing motion will not diverge as quickly as

in the former case nor will the controlling power needed be as great as

in the former case.

For a complete discussion of helicopter control, dynamic stability

must also be included.

9
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C. DYNAMIC STABILITY

Dynamic stability refers to a body's resulting motions with respect

to time after being disturbed from equilibrium. A plot of displacement

versus time will reveal the dynamic stability tendencies of a body. All

possible responses of a disturbed body can be seen in Figure 1-2. Two

general modes of motion exist, oscillatory and non-oscillatory (also

called periodic and aperiodic). As is implied by the term, oscillatory,

the position of the body will cycle in some manner about the equilibrium

position.

The motion of both the oscillatory and non-oscillator ,.Jes will

also depend on whether or not such motion is damped. If a iventu-

ally returns to the equilibrium position, then its motion is said to be

damped. If insufficient damping is available, then the body's motion

will become divergent. Divergent oscillations are generally undesire-

able and usually result in material failure of a mechanical system.

Damping tends to take energy out of a system. Some factors which cause

damping are friction, hydraulic dampers, springs, etc. Divergent

motions have energy added to the dynamic system. An example of this is

a pilot-induced oscillation (PIO) where the pilot's control movements

are in the same direction and with the same timing as the aircraft's

response.

Neutral stability is another possible behavior of a disturoed body.

Here the body remains at its original disturbed state or oscillates at a

constant amplitude about the equilibrium state. Static stability is

necessary for dynamic stability to exist, but the converse is not true.

10
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0. AXES SYSTEMS

To establish a basis for the discussion of unbalanced forces and

moments on an aircraft and that aircraft's subsequent reaction, a ref-

erence coordinate frame must be established. Figure 1-3 illustrates the

conventional arrangement of perpendicular axes which are centered at the

helicopter's center of gravity. The directions indicated by the arrows

are the positive direction.

-AXI 5 --

X, AA 15 2

N: YAW McmEtNT

Z -AXI1

Figure 1-3. Axis System Notation
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The positive directions of this axis system for the X, Y, and Z axes

are forward, right, and down, respectively. Thus this is a right-handed

system. (Note: A right-handed rectangular coordinate system derives

its name from the analogy that a right-threaded screw rotated through 90

degrees from OX to OY will advance in the positive Z direction (see

Figure 1-4). Forces are named for the directions along which they act.

Thus an X-force is one acting in the X-direction. The same nomenclature

system applies for the Y and Z forces.

YZ

Figure 1-4. Right-Handed Coordinate System

Rational motion also occurs about the X, Y, and Z axes. These

moments are termed L, M, and N. L is the rolling moment which occurs

about the longitudinal (X) axis. A roll to the right is defined as

positive. M is the pitching moment which occurs about the lateral (Y)

axis. A nose-up pitch describes a positive value of M. The yawing

13
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N-moment occurs about the vertical (Z) axis. A positive yaw is defined

as one which moves the nose of the helicopter to the right. Table 1-1

summarizes the axis system notation.

TABLE I-1. Axis System Notation

ANGULAR ANGULAR

AXIS FORCE VELOCITY MOMENT MEASURE VELOCITY

X X U L P

Y Y V M Q

Z Z W NR

This same set of orthogonal axes can be referenced in various ways,

depending on the needs of the engineer. Certain particular problems

dealing with aircraft stability can be solved more easily by the proper

selection of axis reference.

Three systems of axis reference are generally used:

(1) Gravity Axis,

(2) Stability Axis, and

(3) Body Axis.

1. Gravity Axis

In this system the Z-axis of the helicopter is always pointing

at the center of the earth, and the X-axis is directed along the horizon.

The gravity axis system is useful for linear displacements and angular

14
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accelerations. Certain simplifications in the stability derivatives can

be achieved; however when helicopter rotation is taken into account

inertial terms and products of inertia must have lengthy corrections.

2. Stability Axis

In this system of reference, the X-axis is aligned with the

velocity vector and is positive pointing into the relative wind. The

Z-axis is perpendicular to the relative wind and the Y-axis is ortho-

gonal to both, forming a right-hand system. Using the stability axis

system can yield great simplifications of the aerodynamic terms. This

system is limited to small disturbance motions, however, because the

moment of inertia terms vary and thus are assumed to be constant in the

equations of motion.

The stability axis reference system has the useful feature of

being directly applicable to wind tunnel results which are commonly

measured parallel with and perpendicular to the wind.

The stability axis is very useful for fixed-wing analysis,

because the relative wind is always somewhat directly on the nose of the

aircraft and varies very little from that direction. The unique capa-

bility of a helicopter to decelerate from forward flight to hovering

flight (zero forward velocity) means that the X- and Z-axes could change

by as much as 90 degrees as the relative velocity of the air changes

from horizontal (on the nose of the helicopter) to vertical (being

pulled down through the rotor disk). Thus the usefulness of this axis

system for helicopters is limited since it cannot be used for comparison

purposes over the whole range of the helicopter's velocity.

15

https://www.abbottaerospace.com/technical-library/


3. Body Axis

The body axis system aligns the X-axis with a datum line on the

helicopter. The Z-axis is perpendicular to the X-axis and is directed

out the bottom of the aircraft while the Y-axis is orthogonal to both.

This system ensures that the inertial terms in the equations of motion

are independent of the flight conditions.

The reference system of body axes is very useful when studying

helicopter dynamics because velocities and accelerations with respect to

these axes are the same as those that would be measured by instruments

in the helicopter and those that are experienced by the pilot.

16
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II. THE EQUATIONS OF MOTION

To obtain solutions of aircraft stability, some quantitative data

must be made available to the engineer. Naturally some formulae or

equations would be helpful when trying to arrive at a mathematical

determination of the stability problem at hand.

In this chapter some elementary concepts will be introduced which

will lead to the development of the equations of motion of the flight

vehicle. It is these equations of motion which will yield the numerical

data needed for problem solutions.

A. LINEAR MOTION

Linear motion is the motion of an object along a line. The line can

either be straight or curved so that linear motion can be further sub-

divided in rectilinear (straight line) or curvilinear (along a curved

line) motion.

1. Rectilinear Motion

The rectilinear motion of a particle can be described by that

particle's position on a straight line and its time derivatives of

position. To quantify this motion a reference point must be selected.

All subsequent measurements of the particle's motion are made with

respect to this reference point. A coordinate system well suited for

recilinear motion is the rectangular cartesian coordinate system.

By aknguse of a selected coordinate system, pmrsthe

generalized coordinates of the particle's position. The distance, s, of

17
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the particle fromi the selected reference point is the difference of the

coordinates for these two points. If th~e origin of the coordinate

system is chosen as the reference point, then the distance to the parti-

cle simply becomes the value p. If some point other than the origin is

chosen as the reference point, then the distance of the particle from

the reference point is p - r where r is the coordinate of the reference

point from the origin. Should the particle move to a new point on the

line, p' , it would then be at a different distance from the origin.

This difference is As (see Figure 2-1).

0 PP

I-S ASA

Figure 2-1. Measurement Along a Line

The distance is given as:

As p -p, (2-1)

The rate at which the particle travels from p to p' is very often of

interest. Thus the average velocity of the particle along this path is

the distance along the path divided by the time it took to cover the

distance.

18
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Vavg As (2-2)

As the time interval becomes very small, the result will be the instant-

aneous velocity of the particle along the path.

V = LIM A (2-3)t*o At

Both average and instantaneous velocities will be used in subsequent

calculations.

Similarly, it can be shown that the acceleration of the particle

is the rate of change of the particle's velocity.

a avg = (2-4)

In the same manner as for velocity, the instantaneous acceler-

ation of the particle can be shown to be:

LIM (2-5)a=t-0 At dt=V(25

and since dv = ds/dt, acceleration can also be expressed as the second

derivative of position with respect to time.

ds/dt _ d2s . (2-6)a - dt d s  (26

The calculation of accelerations become important because they lead

directly to forces on the airframe via Newton's Second Law:

F = ma (2-7)

19
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2. Curvilinear Motion

The second type of linear motion occurs along a curved path and

is therefore called curvilinear motion. Plane curvilinear m.tion occurs

when a particle that is moving along a curved path remains in a single

plane. For this case the position in which the particle motion occurs

(see Figure 2-2).

pi

IF

/

Figure 2-2. Curvilinear Motion

in this figure, the particle has moved from point p to point p' along

the curved path. The particle's motion takes place in the plane of the

paper and occurs about point 0. The position of the new point p' is

20
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given by the vector addition of the old position vector at p (vector r)

plus the change that occurs during the movement (vector Ar).

As was the case with rectilinear motion, the average velocity ofI a point along the path is equal to the time rate of change of the

point's position vector. Thus

v Ar (2-8)
avg At

If the time interval becomes smaller and smaller, the Ar vector ap-

proaches tangency to the curved path. In the limiting case, the

velocity will approach the instantaneous velocity of the particle along

the curved path.

V_ LIM r - dr (2-9)

If the speed of the particle increases as it moves from p to p'

then the particle is accelerating. The same steps that were used to

develop the instantaneous velocity can be followed to find the acceler-

ation term. The result is

a=LIM _Av =dv d2r (2-10)a t-~0 t Tt d

B. ANGULAR MOTION

While linear motion can be used to describe a significant number of

motions that are commonly encountered in physics, motion can also be

described in another way. Angular measurements to a moving point from a

fixed point are commonly used when dealing with rotating systems.

21
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The description of angular motion will be limited to that occuring

in a plane. Before this angular motion can be described, some reference

point must be selected. A point in the plane of motion is a good refer-

ence point and an axis perpendicular to the plane of motion serves as

the axis about which the angular motion occurs. This becomes the axis

of rotation.

Before angular measurement can begin, a reference axis in the plane

of rotation must be chosen. All angular positions will be measured with

respect to this reference axis. The reference axis itself is chosen

arbitrarily and it does not rotate. Although the system being measured

may rotate, the reference axis remains fixed.

Angular displacements are measured in degrees or radians using the

symbol 0. By convention, a positive angular displacement is in a

counterclockwise direction from the reference axis (see Figure 2-3).

A

0

Figure 2-3. Angular Measure

22
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According to the foregoing rules, the angular measurement of line OB

is at some angle e from the arbitrarily chosen reference axis, OA. The

axis of rotation is perpendicular to the paper at point 0. The angular

rate at which the line moves from position OA to GB in Figure 2-3 is the

time rate of change of its angular position. As was the case with

previous descriptions of linear velocity, the angular velocity, w, is

the first time derivative of the angular position.

S= (2-11)

Similarly, angular acceleration, a, is the time derivative on angular

velocity or the second time derivative of angular position.

d : = 0 (2-12)dt

A common case of motion combines both curvilinear and angular

motions. This case of motion occurs when a particle moves around a

fixed point at a fixed distance from that point. An example of this is

the arc traced out by the helicopter's rotor blade tips.

As a helicopter blade sweeps the air, all points on the blade are

rotating at the same angular velocity. However each point at a differ-

ent radius from the center of the axis of rotation has a Oifferent

curvilinear velocity or speed. This can be readily understood by ex-

amining Figure 2-4. R, and R2 are two points located on the same

rotating line (for example, a rotor blade). During a single rotation of

the rotor disk, R2 travels a greater distance than R1. The distance

traveled by each point is the circumference of the circle traced out by

23
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wI

~R2

Figure 2-4. Dependence of Linear Velocity on Radius

the point. The path traced out by R2 is longer than that traced out by

RI. Since both points complete one revolution of the circle in the same

amount of time, R2 must travel faster than R1 .

The velocity of a particle rotating about a fixed point is given by

both its angular velocity and distance from the axis of rotation and is

developed in the following manner (refer to Figure 2-5). The instant-

aneous velocity of the rotating point is the limit as time approaches

zero of the change in the particle's position vector divided by tne

average time over which this position change occurs.

lim -r (2-13)t- 0 At

24

.i *... L &.. .-,

https://www.abbottaerospace.com/technical-library/


II

Figure 2-5. Linear Velocity of a Rotating Point

where Ar r times the change in angular displacement. Thus

lim rO (2-
v : = r'u (-14)

t-,., At

r is measured in feet or meters and w is measured in radians per second.

It can be seen from equation (2-14) that a particle located at half

the distance from the rotor hub to the tip of the rotor is moving at

half the linear velocity of a particle located at the rotor tip.

25
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C. FORCES AND MOMENTS

1. Forces

No discussion of forces would be complete without giving credit

to Sir Issac Newton and his statements of the basic laws governing the

motion of a particle [Ref. 2]. They are:

Law I. A particle remains at rest or continues to move in
a straight line with a uniform velocity if there is no
unbalanced force acting on it.

Law II. The acceleration of a particle is proportional to
the resultant force acting on it and is in the direction of
the force.

Law III. The forces of action and reaction between inter-
acting bodies are equal in magnitude, opposite in direction,
and collinear.

The word force is mentioned in all three of Newton's laws.

Therefore it would seem that force plays a large part in the movement of

a particle (or of an object, if tne center of gravity of that object is

considered to be a particle). Force can be defined as the action of one

body on another. A force acting in a direction tends to move an object

it acts upon on the same direction, according to Law II.

:t should be noted that forces are vector quantities. That is,

they are composed of a magnitude and a direction. The direction of a

force becomes very important when attempting to predict the reactions of

objects to forces.

The importance of the vectorial nature of forces cannot be over-

emphasized. For example, what is the resultant of a 50-pound force

applied to another 50-pound force? The correct answer could be zero

pou-nds, 100 pounds, or anywhere in between depending on whether the

26
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forces were directly opposite to each other, in the same direction, or

at some other angular position between these two extremes.

Newton's second law is of primary interest for the moment.

Another way of stating the second law is that the resultant force acting

on a particle is proportional to the time rate of change of the momentum

of the particle and that this change is in the direction of the force.

The proportionality factor is the mass of the particle in question.

Both statements of Newton's second law lead to the same result

in equation form:

' dmv = md6 (2-15)
dt dt a(

It will be assumed that the mass of the particle does not change

during the time interval dt. Thus dmv/dt can be written mdv/dt. Also

note that Z symbol was used. The resultant acceleration of the particle

is equal to the resultant vector sum of the forces acting on the parti-

cle. Thus many different forces acting on an object can be vectorially

resolved into one force (see Figure 2-6).

FORCE

F4
F1

F~2

Figure 2-6. Vector Summation
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The particle will -espond in the same way no matter if we deal

with the several individual forces or with their resultant, but the

picture is greatly simplified when dealing with only a single resultant

force.

Both the vectorial nature of forces and the capability to sum

individual forces can be used with the axis systems previously described

for the helicopter. Being a complex machine, the helicopter can have

many different forces from different sources acting at various points on

the body of the aircraft. These forces can be broken down into compon-

ents along the aircraft axes and summed such that there now exists three

mutually perpendicular forces acting at the center of gravity of the

aircraft. The problem of the helicopter's reaction to these various

forces is now greatly simplified (see Figure 2-7).

x

FXi .--- RESULTAA#I

Figure 2-7. Components of a Vector in a Plane
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Equation (2-15) can be written for each axis direction:

"X = max ; Y = may ; -- Z = maz (2-16)

As an example, a single force not lying in any single plane would have

components in the X, Y, and Z directions. The comronents of this force

would be determined and would be respectively included in each of the

three force equations above. If a force acts entirely along a single

axis, the Z-axis for example, it would have no components in the other

two directions, X or Y in this case.

Units of measure for force are listed below in Table 2-1.

Table 2-1. Units of Measure for Force

ENGLISH SI
SYMBOL ENGINEERING SYSTEM

SYSTEM

FORCE Pounds Force Newtons

MASS m Slugs Kilograms

ACCELERATION a ft/sec2  m/sec2

L

Since the consideration of variable masses will not be con-

sidered (the mass of a helicopter will not change over the time periods

under consideration here) it can be seen that the acceleration of a body

is directly proportional to the force acting on the body.
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2. Moments

Forces applied to a particle create only linear motion of the

particle. This is so because a particle is considered to be a very

small quantity and any forces applied must necessarily act at its center

of mass. The phenomenon of angular acceleration occurring simultaneous-

ly with linear acceleration arises when a force is applied to an object

(something larger than a particle). If the direction vector of a force

applied to an object does not pass directly through the object's center

of mass then the object will start to rotate about its center of mass

because a moment has been created.

A moment is a force applied at a distance from an axis around

which an object rotates. If the object is located in free-space, it

will rotate about its center of mass. If the object is pinned somehow,

the pin will act as the pivot point about which the object will rotate.

In equation form, for a fixed-axis system:

M = FTr (2-17)

where M is the moment in foot-pounds, F is the force, and r is the per-

pendicular distance from the object's center of mass to the force vector

(see Figure 2-8).

Just like a force, a moment is a vectorial quantity but it 'S a

rotational vector in this case. As with angular velocity, a positive

moment is defined in the counterclockwise direction.

In the evaluation of the effects external moments have on the

motion of the helicopter, the moment of momentum, H, is considered.
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Figure 2-8. Generation of a Moment

By definition, the moment of momentum of a small part on the aircraft,

dm, is:

6h = r x V dm (2-18)

Taking the derivative of the above yields

6h (r x V) dm - xVdm+rx 6m (2-19)
dt dt dt dt

Considering a small chunk of mass on a rotating body, the velo-

city of this piece of mass is:

V + dr (2-20)c dt

Where dr/dt is the rotational velocity of the body and Vc is the velo-

city of the object's center of mass.
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Also,

rx 6m=rx 6T= (2-21)

This is true since dV/dt 6m = 6F is just F = ma, while 6G is the moment

about the center of mass of the object produced by force 6F.

Substituting equations (2-20) and (2-21) into equation (2-19)

gives:

6d L(6h) -(V Vc)x V6m (2-22)

where G is the linear momentum of a particle, my.

Since V x V = 0, this becomes

L (6h) + Vc x V dm (2-23)
dt c

If equation (2-23) is summed for all small mass elements on the

helicopter the resultant mass is the total mass of the helicopter and

the resultant velocity is V c As shown before, V x V = 0 and equation

(2-23) reduces to

- dh
d; (2-24)
dt

This equation states that the angular momentum of an object is changed

when a moment is applied to the object.
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D. CORIOLIS FORCES AND MOMENTS

Coriolis forces arise from the acceleration produced when a particle

moves along a path in a plane which is itself rotating. A flapping

blade is subject to a coriolis acceleration in the plane of rotation.

When a rctor blade flaps, its moment of inertia about the rotational

axis changes. This can be seen by considering the center of mass of the

blade being rotated to an increased flapping angle, 0 + Ap. As the

blade flaps up, the center of mass moves closer to the rotational axis

(see Figure 
2-9.

A
__ __ _ HORIZON

Figure 2-9. Motion of Flapping Blade

From the law of the conservation of angular momentum, the blade will

experience an accelerating force if the center of mass of the blade

moves closer to the rotational axis (flaps up from A to B) or a retard-

ing force if the center of mass moves farther away (flaps down from B to
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A). These forces are manifested as vibrations at the blade root, and

for every harmonic of flapping there is an appropriate inplane Coriolis

vibration.

To find the coriolis force the following steps are used [Ref. 3].

Point B has two components of velocity which are of interest, dr/dt

along the blade projection (inwards) and wr cos (B + AP) (in the plane

of rotation). Taking components of velocity on the line perpendicular

to the blade at P2 , (see Figure 2-10) results in:

dr A6 + Or cos ( + AP) (2-24)
dt

and the difference in velocity perpendicular to the original projection

between P2 and P1 is:

dA6+ O2r (cos g+ AP~) - Or cos 0
dt

(2-25)

d (r cos O)Q + Or (cos cos Ap - sin P sin Ap) - Or cos p

=,Cos

Figure 2-10. Flapping Blade in Plane of Rotation
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Equation (2-25) was arrived at by using the trigonometric identity

cos p + AP = cos 0 cos AP - sin 0 sin AP (2-26)

Using small angle theory cos ] 1 and sin {. This will result

in

= r sin AO - Or 0 AP (2-27)
dt

Dividing through by At to find the acceleration yields:

AV (2-28)

rp L r0M-8At dt At at

and since -16 Q and A=At At

acor -rp - Or PI (2-29)

which gives the final form of the Coriolis acceleration:

aco r = - 2 rQ p (2-30)

If the Coriolis force is desired, simply multiply the mass of the

blade by the acceleration obtained above.

Fcor= -2 Mb ro (2-31)

This Coriolis force can be considered to act at the center of the

blade and it produces a moment about the hub of the rotor. The moment

produced therefore is the force times the distance through which the

force acts,
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Mcor 2 Mb r2 0 (2-32)

A useful relation can be used to shorten this equation. The moment

of inertia of an object is defined as

I = y2dm (2-33)

where y is the distance from an axis and dm is an elementary particle of

mass. If the total mass of the object and its center of mass location

is known, the moment of inertia can be expressed as

I = k2m (2-34)

where k is the distance from the axis to the center of mass and m is the

total mass. Thus, substituting r for k in equation (2-34) and substi-

tuting equation (2-34) into equation (2-32) yields

Mco r = 2 I Q P (2-35)

NOTE: The Coriolis force just derived is not the only Coriolis force

that arises from the dynamic notions of the helicopter. It is

perhaps the most significant and easily understood Coriolis

force, but it must be pointed out that many Coriolis forces must

be accounted for when a very rigorous analysis of the heli-

copter's motions is conducted. Other Coriolis forces will arise

from aeroelastic effects of the rotor blades, differences in

motion between the helicopter rotor and fuselage and also from

fuselage aeroelastic effects. Many of these latter Coriolis

forces will be very small and will not be apparent when con-

sidering the helicopter as a rigid body.
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E. RIGID BODY EQUATIONS

Now that some of the background concerning the nature of forces and

moments has been presented, it remains to put these ideas to use for the

solution of problems dealing with helicopter stability. Simply put, the

various forces and moments that act on the helicopter are resolved into

components which act along or about one of the principal axes of the

helicopter. The various forces and moments to be considered are the

factors which give rise to the vehicle's motion.

According to Reference 4, certain assumptions concerning the heli-

copter's motions and references will have to be made in order to

establish the ground rules for further analysis and also to simplify the

systems of equations that will arise.

Assumption 1: The helicopter is a rigid body.

A rigid body is one in which motions between individual mass ele-

ments that make up the body do not occur. In this way, distances

between specified jints in the helicopter's fuselage remain fixed.

Thus no bending or twisting of the fuselage is considered as the heli-

copter moves through space.

This assumption allows the helicopter's motion through space to be

described as the rectilinear motion of the center of mass of the air-

craft and by the curvilinear motion of the same point. In reality, the

fuselage does bend and twist to a certain degree in flight. The dy-

namics of the structure are changed when these aeroelastic effects are

considered. The aeroelastic effects serve to greatly increase the

degrees of freedom that must be considered when analyzing the equations
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of motion. A rigid body will be assumed here since aeroelasticity is

beyond the purpose of this paper and consequently the solution to gener-

ated problems will not be overly complicated.

Assumption 2: The earth is considered to be flat and is fixed in
space.

This assumption is made to negate any minor corrections that may

otherwise have to be made for the gravity constant or for a moving in-

ertial reference frame. Negligible error is introduced by this assump-

tion since the altitudes, air speeds, and time lengths under consider-

ation are small.

Assumption 3: The helicopter is assumed to be in a trimmed level
flight condition, or in a hover. Small perturbations
in the helicopter's motion are then considered.

This assumption allows the linearizing of normally nonlinear re-

sponses by considering only small increments of motion. Simplification

of the required equations used to solve for the helicopter's motion is

the result. While the analyses will be performed for very small changes

in motion, the results can be extended to larger motions without very

much loss in accuracy.

Other mathematical benefits arising from this assumption include the

small angle approximations for sine and cosine:

(1) sina a

(2) cosa = 1

where a is measured in radians, and thE fact that the power of any small

increment can be ignored 'vhen compared to the original: &2 :Z 0 when e is

small.
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Assumption 4: The helicopter is trimmed in steady, level flight and
the longitudinal forces and moments due to lateral
perturbations from trim are negligible.

*1 This assumption discounts any initial angular velocities in roll or

yaw (Po, Ro) and any initial lateral velocity (Vo). Furthermore, any

lateral perturbations that do arise will not affect the longitudinal

response of the aircraft. This last statement is important since the

longitudinal and lateral equations of motion are thereby decoupled.

Assumption 5: The X-Z plane is a plane of symmetry.

This is usually the case for most flight vehicles. Although this is

not true for many helicopters, very little error is introduced into the

final equations of motion when this assumption is made. With symmetry

and with Assumption 4 considered all rolling moments, yawing moments,

and side forces are reduced to zero. Consequently the longitudinal

equations of motion can be described by just three equations: those

dealing with longitudinal and vertical forces and with the pitching

moment.

Combining these five assumptions makes it possible to describe the

helicopter's motion with just six equations. This is so because the

assumptions allowed many additional degrees of freedom to be dropped

from consideration. Consequently, three force equations and three

moment equations are used to describe the helicopter's motion.

Note in particular Assumption 4. Since the longitudinal ano lateral-

directional motions are now decoupled, only those forces and moments

which affect the longitudinal motions of the helicopter need be con-

sidered. These turn out to be the X and Z forces and the M moment.
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1. Three Force Equations

Since forces act in straight lines, it is very convenient to

resolve the components of given forces acting on the helicopter along

the X, Y, and Z axes. Only external forces on the aircraft will be

considered. Internal forces must necessarily be opposed by other in-

ternal forces such that the sum total of all the internal forces on the

helicopter's fuselage is zero. While internal forces may play an im-

portant part in airframe structural considerations, they play no part in

the analysis of the helicopter's motions. The external forces that will

be considered arise from three principal sources: gravity forces, in-

ertia forces, and aerodynamic forces.

2. Three Moment Equations

The same principles that were used for the determination of the

three force equations are also used for moments. Here, however, instead

of the X, Y, and Z axes acting as directions along which forces a,e

measured, the axes act as lines around which the moments turn. No-

menclature of the moments will be briefly reviewed:

L-Moment: Rotates about the X-axis; positive is right wing down.

M-Moment: Rotates about the Y-axis; positive is nose up.

N-Moment: Rotates about the Z-axis; positive is nose right.

F. EXPANSION OF FORES AND MOMENTS

The equatons for the generalized aerodynamic forces and moments

acting on an aircraft have commonly been written in the form

A CA p V2S (2-36)
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where A stands for any desired force or moment, CA is a nondimensional

coefficient, p is air density, V is the steady-state velocity of the

vehicle, and S is the surface area. It can be seen by this equation

that the aerodynamic forces and moments generated on the helicopter are

dependent upon the density of the air through which the vehicle is

flying and also the velocity of the aircraft relative to the air.

The nondimensional coefficients, CAt are also dependent on Reynolds

and Mach numbers, angles of attack and sideslip, and linear and angular

velocity and their derivatives. If the aerodynamic forces are consider-

ed to be continuous functions of all these variables, each of the forces

and moments (X, Y, Z and L, M, N respectively) can be expressed in terms

of the variables by expanding the terms in a Taylor series [Ref. 4].

A Taylor series for the effect of forward velocity changes has the

form:

F 32 F AU2  33F Auu3F = F0 
+  u 2! ... (2-37)

All partial derivative terms starting with the second derivative arle

higher-order terms and can be neglected by means of Assumption 3 in the

previous section without changing the accuracy of the solution. This

will help to simplify the equation by eliminating many terms w4hich serve

to complicate the problem but contribute very little to the value of the

final solution.

The force expression is now reduced to one showing the initial trim

condition and all changes to the force resulting from the first partial

derivative of force with respect to major variables and their deriva-

tives when applicable.
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aF aF 8F 8F a
FF0 + y- Au + F Az + LF AO + - Av + - Ai + ... (2-38)

8z 38 au 8

Since the change in force from a steady flight condition due to

perturbations is desired and not the total force, the trim force can be

subtracted from both sides of the equation. The result is:

3F F aF aF

AF 3 A-,%u + - Az + L AO + - u + - A! + ... (2-39)
aa a 3
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III. CALCULATION OF THE STABILITY DERIVATIVES

Probably the most limiting factor of expanding the helicopter's

utility to a multi-mission role has been its relatively slow cruise

speed. Therefore much emphasis has been directed in recent years to-

wards increasing the maximum forward flight velocity of helicopters.

The stability response of helicopters in hover and in slow flight can

generally be classified as one consisting of two heavily damped roots

and a divergent oscillatory motion. These characteristics can (and

usually do) change as the aircraft increases its forward speed.

Even though the response of a helicopter in a hover is generally

known, its response at high forward flight velocities cannot accurately

be predicted. Therefore, the engineer must be able to calculate the

stability derivatives for the aircraft in question and at the proper

flight condition (altitude and airspeed) so that he may solve for the

helicopter's modes of response. The equations and procedures presented

in this chapter outline how the calculation of those stability deriva-

tives are carried out. The charts used for this procedure apply to the

regime of high forward flight velocity with an advance ratio of 0.3 or

greater.

A. TYPES AND USES

Both dimensional and non-dimensional stability derivatives are used

for the solution of problems dealing with aircraft stability and control.
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Each type derivative has certain useful properties. By using non-dimen-

sional derivatives, the stability characteristics of aircraft can be

compared regardless of size.

Non-dimensional derivatives are concerned with force and moment co-

efficients and with non-dimensional velocity and time. The real advan-

tage to using non-dimensional stability derivatives occurs when

comparing the stability values between different sizes of the same

aircraft, for example comparing data obtained from a one-tenth scale

model in a wind tunnel with data expected or obtained from flight tests

of the full scale aircraft. This capability of non-dimensional deriva-

tives to allow the comparison of data in this manner makes possible the

prediction of stability characteristics of aircraft based on tests

performed on scale models. It is immediately apparent that this is an

economical benefit when the alternative is to perform all tests and

development on full scale aircraft.

Dimensional derivatives are good for measuring direct forces and

moments of the aircraft. The use of dimensional stability derivatives

lead directly to numerical coefficients in the sets of simultaneous

differential equations describing the real time dynamics of the airframe.

By analyzing the dynamic response numbers thus obtained, the heli-

copter's stability characteristics can be ascertained. Once this is

known, the amount of control necessary to reach the desired flying

qualities can be added.

Care should be taken when comparing the values of stability deriva-

tives received from different sources. It is important to note that
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both dimensional and non-dimensional derivatives are widely used

throughout the industry and that different methods may be used to non-

dimensionalize or normalize the derivatives for a particular aircraft.

Thus if the values of the stability derivatives for a given aircraft

from one source are found to differ from those values received from

another source, the most likely cause for the difference is that a

different system of non-dimensionalizing or normalizing the derivatives

has been used by each source.

It should be noted that one common method used for dimensional

derivatives is to normalize the force derivatives by the mass of the

aircraft and the moment derivatives by the aircraft's moment of inertia

about the pitching axis. This method is used here.

In this chapter the procedures will be outlined for calculating the

stability derivatives Xu, Xw, Zu, Zw, Mu, MW, and M . These derivatives

are needed to solve the stability determinant which will yield the modes

of motion of the helicopter. These procedures are presented in more

detail in [Ref. 5].

Initially, certain geometric data must be known about the helicopter.

The forward flight velocity at which the stability condition will be

evaluated must also be chosen, and the trim condition of the helicopter

computed. Since the aerodynamic forces which act on the helicopter are

dependent on flight velocity, the trim condition and subsequent stabil-

ity derivatives will be different for each velocity evaluated.

After the trim conditions of the helicopter are found at the desired

airspeed, the isolated derivatives are determined and corrected for main

rotor solidity to yield the local derivatives. From these, the total

derivatives may be calculated.
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B. DEFINITION OF TERMS

The following definitions will be used:

a = Lift curve slope of the rotor blade

ao = Blade coning angle (radians)

a, = Longitudinal flapping angle (radians)

AR = Aspect ratio

AXFus = Fuselage frontal area (sq ft)

A ZFus Fuselage planform area (sq ft)

b = Number of rotor blades

b, = Lateral flapping angle (radians)

c Blade chord (ft)

C00 = Profile drag coefficient

C0  = Drag coefficient = D/ pV2S

CD  = Drag coefficient of the main rotor = D/T.F.

CL Lii" coefficient = L/ pV2S

C = Lift coefficient of the main rotor = L/T.F.

CQ = Rotor torque coefficient = Q/T.F. R

D = Aerodynamic drag force (Ibs)

e Blade hinge offset

1b = Blade moment of inertia about flapping hinge (slug-sq ft)

Iy = Aircraft moment of inertia abolit the oitching axis

K Downwash interference factor
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L = Aerodynamic lift force (lbs)

I = Longitudinal moment arm, positive when the point of appli-
cation of the force ',ector is forward from the C.G. position
(ft)

1 z Normal (vertical) moment arm, positive when the point of

application of the force vector is below the C.G. position
; (ft)

M = Pitching moment of an aircraft component (ft-lb)

Mu, Mw, M = Pitching moment total derivatives
q

M = First moment of blade mass about the flapping hinge (slug-ft)

MT = Mach number of advancing blade tip

Q = Rotor torque (ft-lbs)

qo = Dynamic pressure = pV2 (lb/sq ft)

R = Rotor radius (ft)

S = Area of an aerodynamic surface (sq ft)

T = Rotor thrust (lbs)

T.F. = Thrust factor = pnR2 (QR)2 (lbs)

Vo  = Steady state or trim value of velocity (ft/sec)

VS  = Velocity of sound in standard atmosphere (ft/sec)

W = Aircraft gross weight (lbs)

X = Longitudinal force along the body X-axis (lbs)

Xu, Xw = Total stability derivatives of the longitudinal X-force

Z = Normal force along the body Z-axis (lbs)

zu, Zw  = Total stability derivatives of the normal Z-force

a Remote wind angle of attack relative to body X-axis (radians)

ac Rotor angle of attack (radians)

y = Lock Intetia number = pacR4

Tb

= Downwash interference angle (radians)
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A = Rotor inflow ratio = 0 C
QR

P = Rotor tip speed ratio - 0 C

p = Air density (slug/cu 
ft)

a = Rotor solidity = b

= Rotor angular velocity (radians/second)

o = Blade twist (radians)

075 = Blade section pitch angle at .75 radius (radians)

SUBSCRIPTS

F = Pertaining to the front rotor

FUS = Pertaining to the fuselage

T = Pertaining to the horizontal tailplane

TR Pertaining to the tail rotor.

The following procedures give a step-by-step approach that can be

followed to find the desired total stability derivatives. The calcu-

lation of the stability derivatives is nothing more than an accounting

of the forces and moments acting on the aircraft. Because of the number

of calculations involved and the interaction of many different compon-

ents, however, the calculation procedure is necessarily a lengthy one.

C. HELICOPTER DATA

Information about the physical layout of the helicopter must be

available before the computations can begin. The following must be

known:
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a, b, c, 1, R, Q, W, Ib, Iy, MS, AX, Az

(CD ) , (AR)T, ST , aT

Because of the high aspect ratio of a helicopter blade, the lift curve

slope of the blade, a, can generally be taken as 5.73 per radian. Es-

tablish the altitude and flight speed, Vo, at which the derivatives are

desired to be known. The altitude will determine the atmospheric den-

sity. For sea level, p = .002377 slugs/cu ft.

Knowing the above, the following parameters can be calculated:

a, p, MT, VS, qo, T.F., Rotor Tip Speed

0. CALCULATION OF HELICOPTER TRIM VALUES

First approximations of the fuselage lift and drag coefficients are

determined with the assumption that aFUS = 0. CL and CD will be recal-

culated when more precise information is known about oFUS" A theore-

tical or experimentally obtained graph of CL CD and CM versusLFuS CFuS CFuS

oFUS is needed to begin the computation. Figure 10.1-3 [Ref. 5] is an

example of such a graph.

The first approximation of fuselage lift and drag will be made using

the coefficients just obtained.

L C q0 A (3-1)
FUS FUS

D C qo A (3-2)
FUS CDFUS XFUS
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The initial estimate of main rotor lift and drag forces can now be made.

L = W - LFUS (3-3)

D = -DFUS (3-4)

The rotor lift and drag coefficients are non-dimensional and are

obtained by dividing main rotor lift by the thrust factor. Both are

normalized by rotor solidity.

S L -T.F.5)

= T (3-6)

Reference 6 contains theoretical rotor data performance charts for

hinged rectangular planform blades of various degrees of twist. Differ-

ent charts are used for the variables of blade twist, tip speed ratio

and advancing tip mach number. All charts are based on a rotor solidity

of 0.1. Corrections must be made if the rotor solidity of the heli-

copter under evaluation varies from 0.1. The charts are entered knowing:

and to find , a, a and 6.75

aY a

Icr = a - 0. 1 (3-7)

o. 1 CL' (3-8)

CD .
0.I D a (3-9)
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The above two quantities, 0.1 and ( .1' together with the

known or calculated quantities blade twist angle, E, main rotor tip

speed ratio, p, and mach number of the advancing blade tip, MT, are

needed to use the charts in [Ref. 5]. These charts will yield an ap-

proximation of the following main rotor trim parameters:

(1) ac Rotor angle of attack

(2) ao Blade coning angle

(3) a, Longitudinal flapping angle

(4) b, Lateral flapping angle

(5) 6.75 Blade section pitch angle at .75 radians

(6) X Inflow ratio

(7) CQ Coefficient of rotor torque =
a T.F.R

The angle of attack of the main rotor, u c , and the rotor torque, Q,

may now be calculated in the following manner:

a c V =C'G (3-10)c =)0.1 + 2 =p

Q (T.F.) aR (3-11)

Interference effects can exist when the downwash created by one

aerodynamic component affects the performance of another aerodynamic

component. These effects can be described as changes in the local angle

of attack and the local velocity. Changes in the local velocity are
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usually small, however, and will not be considered here. The local

angle of attack can be expressed by the following equation:

aLOCAL a + i - e (3-12)

where a is the remote wind angle of attack with respect to the X-axis

i is the geometric inclination of the aerodynamic component being
evaluated with respect to the X-axis

e is the aerodynamic interference angle.

For helicopters, aerodynamic interference is produced mainly by the

main rotor downwash. The downwash velocity of a rotor varies with time

as well as position and the result is an exceedingly complicated situa-

tion to evaluate. Fortunately, measurements of lift and drag for a

single rotor helicopter as reported in Reference 5 show that inter-

ference effects between the main rotor and fuselage and the main rotor

and horizontal tail are negligible.

The interference between the front and rear rotors of a tandem rotor

configuration is more significant. Tandem rotors will not be evaluated

here, however, Reference 5 contains charts and procedures for calcu-

lating this interference effect.

The downwash interference angles, t, are usually small. They can be

calculated using equation (3-13).

&FUS T = ETR = K (TAN ac (3-13)

where K is the rotor interference fictor and is usually equal to 1.0 for

single rotor aircraft.
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The above calculations have revealed additional information about

the trim condition of the helicopter. A second approximation of the

fuselage trim angle of attack can now be made. First a mathematical

relationship is obtained between aFUS and CM This information is
FUS

then plotted against experimental data far the same two factors. The

intersection of the two curves will yield the trim value for a FUS

Use equation (3-14) to find the relation between FUS and CMFus.

ebjj
2M

[Ix L - IZ D + 2 (a + c - i)]F + qo [IX S a (i -

FUS = I- X D) + Iz L)F - qo (lX Sa)T

CM qo Ax FUS

- CM FUS AXFUS

X D) + lz L)F - qo (lX Sa)T - SFUS (3-14)

The only two unknowns in equation (3-14) are cYFUS and C The
; S

sult will be that some constant times CM Fus will equal otFUS' Plot this

against the experimental data for the values such as shown in Figure

10.1-11 [Ref. 5]. The intersection of the two lines will be the new

approximation of FUS"

The recently obtained value of c FUS can be used to gain a second

approximation of C, CO CN, and CM by using the M vs.
"FUS 0FUS FUS FUS

1FUS figure again.

A refined approximation of the fuselage forces can be gained by

using equations (3-1) and (3-2). The fuselage pitching moment can be

calculated from equation (3-15).
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MFUS CM qo Ax 1 (3-15)MFS CFuS AFUS FUS

Fail Rotor Calculations

The yawing moment of the fuselage is calculated next.

N C qo A 
1FUs (3-16)

FUS CNFUS F US

The tail rotor thrust must be equal to the yaw moments produced by

the main rotor and the fuselage. Thus:

N FUS + QF
TTR - lX (3-17)- TR

The coefficient of tail rotor thrust can now be obtained.

(CC]
a ) TR TR (3-18)

Knowing the values of 0, TR, PTR, and MT (calculated previously) plus
C.1 

T
CL and assuming ( = 0, use the appropriate charts in [Ref. 5]

0 TR cTR ar

to find:

TR 0.1 (S, TR *\TR '

compute:

(LC) [(' ) + (CC) ]  (3-19N)
ay T TR LG 0 . =2p C TR
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The drag of the tail rotor can now be calculated:

DTR = (T.F.) a] TR (3-20)

The only tail rotor derivative needed is:

DTR = (T. F. c) -

auTR Q R TR (33PITR (3-20a)

The last term in equation (3-20a) is obtained from the appropriate

chart of Reference 5 knowing p, MT 
and L

T9 a oTR

The characteristics of the horizontal tail plane are determined from

the following equations:

o Of FUS + &FUS (3-21)

aT + LT -T (3-22)

CL = aT CIT (3-23)

CDT o iAR) T (3-24)

LT CL qo 5T (3-25)

DT CDT qo ST (3-26)
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Forces are summed in the X and Z directions to obtain a new approxi-

mation of the main rotor lift and drag. The following equations are

used:

K, = Wa - LFUS (a-sFUS) - LT (WT) + DFUS + DT + DTR (3-27)

K2 = DFUS (a-FUS) + DT (a-T) + DTR (aU-TR) + LFUS + LT - W (3-28)

where K, represents the total drag being developed by the helicopter and

K2 represents the total lift.

The lift of the main rotor can now be approximated from the follow-

ing two equations:

LF = K, - K2  (3-29)

L - K,
DF - 1 - oz (3-30)

The angle of attack used here is from equation (3-16).

Equations (3-5 through 3-9) are used to obtain better estimates for

(L (C ) and D =)

() ( ) 0.1 , anC 0.1

The steps following equation (3-9) to equation (3-25) should be

repeated until the trim values converge. This should only take one or

two iterations. The result of the above calculations will yield thn

final trim values of the helicopter at one airspeed. These values are

needed for the further calculation of the stability aerivatives.
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E. CALCULATION OF ROTOR ISOLATED DERIVATIVES

Isolated rotor derivatives are defined as those aerodynamic para-

meters for the rotor that change with respect to tip speed ratio, p,

rotor angle of attack, acl and blade section pitch angle at 0.75 radius,

4 0.75. Theoretical values of these derivatives are plotted on charts and

presented in Reference 5 as functions of a, 6, y, and p.

These charts were derived for rotor solidity equal to 0.1. If the

actual rotor solidity for the helicopter being evaluated differs from

0.1, then corrections should be made to the values obtained from these

charts.

The parameters which must be corrected for solidity are those deal-

ing with p and afC. The correction factors and equations to use when

correcting for solidity are listed below.

Solidity Corrections for (pi) Derivatives

K ~LaJ AaG aaJ (3-31)

where

2Aa = a 0. 1 (3-32)

a(-) (3-33)

~ aac 0.1

-denotes stability derivatives for rotor solidity a 0.1.
These values can be directly obtained from the charts of
Section 7.5. in Reference 5.
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a(-) ( c (CC
Oj 0.1 [~ j 0.1 CT -.--+ K2  "s-- (Z'-)TK1 ( " j72T

(3-34)

where
_ [ C' (Ll

K2 = 2 p T c (3-35)

3a. = (2a1) + K2 (aa) (3-36)
aN'0.1 c 0.1

ax = (L + K2 (Lc) (3-37)8-P) I 01 au O. 1

Solidity Corrections for (ac ) Derivatives

C 'r CL'

a -= K1  
(3-38)

+ 'A LC

Kc 0.1 a L'- c 0 .11t

)a_ = K,(t-2 j  (3-40)

c c 0

0.1

_ __ _ L() (3.41)
c c 0.1
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Obtain the following p derivatives from Section 7.5 of [Ref. 5]:

3 aa, a (!_) a (C )
Lx CDa; a

and the a derivatives:

CL' C'-

-aa_ 3A aa1
aa aa ' c  ' 3ac

F. CALCULATION OF THE LOCAL DERIVATIVES

Using the values obtained from the charts in Reference 5 and cor-

rected for solidity, if necessary, calculate the following dimensional

derivatives for the main rotor. These local derivatives are dimensional

expressions of the change of local forces or moments of various compon-

ents with respect to the local wind conditions.

CL'
8 LF '(T.F.) F a(- - 1 lb-sec

u derivatives: uF  = L T ] iLa ft (3-42)
auF Q a f

CD'
S=T lb-sec (3-43)

au F L ft (-4

aauF  = ad FjI-sec (3-44)

au Q R . La ]ftF

3 M a U F [ eb ,] r a -s e c ( 3 4 )

F 2~R F
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3LE 
La derivatives: £( . . a l b/rad (3-46)

8a ~~(TF.)a] (I -L)
F I c9a

am HUB FFeboMS1 Laa1 ] lb-ft (-8

3aFL 2 aaf rad (-8

derivatives: -3 sec (-9

The isolated derivatives for the fuselage are found next. Using the

figure referred to in Section D and the trim values for the fuselage,

determine:

3CLFUS acDF US 3CMFUS

3aFUS auFUS a U

These values are used next to compute the local derivatives of the fuse-

lage. These are dimensional derivatives.

u FSderivatives: 3L FUS - 2 LFU lb-sec (-0
FSau FUS V0  ft (-0

~FUS 2 D ?~FUS lb-sec (33-51)
au V0  ftFUS

aFUS 2 Mlb-sc (-2
-u - ' MFUS ft ( - 2

FUS
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a.U derivatives: a3LFJ= a0 (aLl

~FUS FUS (aGUS/ ra

3DFUS = oA (CDFU b(-4
- Aa rad(3)
FSFUS FUS

3FS= qoA aCMF lb-ft (3-55)
3aFUS x US EUS / rad

The derivatives for the horizontal tail are obtained using the

charts and procedures in Reference 7. Determination of the local de-

rivatives for the horizontal tail can be made using the following

equations:

u derivatives: aLT _2 lb-sec (-6
T- - LT(-6

a = 2 lb-sec

au T oT ft (3-57)

or d-,rivatives: 3LT aSlb (-8
= q0 aT ST rad (-8

T LT lb
rT T(AR)T (359)d
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G. CALCULATION OF THE TOTAL STABILITY DERIVATIVES

The total stability derivatives can finally be determined. The

calculations are based on the isolated and local derivatives found in

the previous sections.

Some angular derivatives needed for the calculation of the total

stability derivatives are as follows:

8CFUS @aT 1 K aL ) (3-60)

a - a KFT \ c

OcFUS aaKFT M _ __) (3-61)

au R
Y - P_ a_ (3-62)

... 1- KRF c- L (3-63)

The X-Force Derivatives

(a) X (XU) + (XU)FUS + (XU) (3-64)
UF T

where
aLF  aDF

(XU) auF 3 u F (3-65)

F F

( 3 LFUS 0DFUS

U FUS a- FUS
FUS rU Ls aU 0s

+3FUS [3LFus aFUS] (3-66)
a@u L3-FUS (a-&FUS) a FuJ

( T  OT  T  LT aT]

=LT
0T T au 3Lr 0  (3-67)

( T  ( -T) "UT - L T ) TI
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(b) Xw = (X W) + (Xw) + (Xw) (3-68)
F FLJS T

where

(X W) F i- (aF a F ) (3-69)

(X ) CFS aFS 3!FUSTo FUS + 'ctFUS (-tFUS) act FUS ] (- )

The Z-Force Derivatives

(a) Zu (Zu) F + (ZU)FUS +(Z ) T(3-72)

where (OT[L(W Ta L] LUSJ (-1
(3-73

(Z) of _ a- (3-7-

U Fa FUS 3UFUS U FUS I

3CIFUS [aLFUS + (DFUS1
S(o'fUS) + DFJ (3-74)

(Z = -[ + aL (375)
T au acl aul
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(b) Zw =(ZW)F +(Zw)FUS +(Zw)T (3-76)

where

(Z)F =- 1 (F) 
(3-77)

/ F

(Z) - v 1 FUS) DaFUS (3-78)

Wu FUS 0  acFUS x )

1 (/LT) (3aT((Zw) T  v' - a-''/ (3-79)

The Pitching Moment (M) Derivatives

(a) Mu -(Xu)F1ZF - (Zu)FIXF - (Zu)T1XT

+ (X) 1 (Z) 1 + aMFUS aMHUBF
U )TR ZTR U TR XTR au (3-80)

where

[3DTR + 3 fTR (DTR)] (3-81)
)TR aUTR a TRct '

3cDTR TR a8DTR](Zu) = - - (ct-STR) (3-82)

uTR L51- TR au'u TR T

(b) Mw: (Xw)F Iz - (Zw)FIF - (ZwT T
W FZF W F XF W T XT

-(Z) 1  1 U 3MMFus+ (3-83)
W TR TR V +(
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where (Z)D (3-84)
TR vo DTR

(C) Mq ZWT1 2J (1 l _MHLB+ (3-85)

q TT ZF 3q LFe 3q

where

Z 1 3-T (3-86)
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IV. SOLUTION OF THE CHARACTERISTIC EQUATION

In Chapter II it was shown that the longitudinal dynamics of the

helicopter's motion could be described by three equations. These equa-

tions deal with forces in the X and Z directions and a moment, M, about

the pitch axis. Knowing the stability derivatives, as outlined in

Chapter III, the stage is set for determining the motions that charac-

terize the helicopter's response to these forces and moments.

The pro dure for obtaining the aircraft's modes of motion lies in a

simultaneous solution to the three equations for longitudinal motion. A

determinant is ideally suited for this purpose. What is sought is the

aircraft's response to gravitational and aerodynamic forces and moments.

Therefore, the stability derivatives are evaluated and the three equa-

tions set equal to zero and solved.

The determinant in question is derived from the two force equations

and one moment equation that have been used for longitudinal dynamics.

For the case of studying the helicopter's natural response (i.e., no

forcing functions) the determinant is set equal to zero and the modes of

motion are then found. If the helicopter's response to a given input is

desired, then the determinant is set equal to that input (the forcing

function) and solved. An example of such a forcing function is the step

input of cyclic or collective movement.

The determinant derivation, from Reference 6, starts with the lin-

earized equations of motion:
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w u = - we cos T + AX (4-1)
g

W w A VO = - we sin r + AZ (4-2)

M =AM (4-3)

AX and AZ are the forces arising from aerodynamics in distrubed

flight and M is the aerodynamic moment in disturbed flight. 8 = q.

It was shown in Chapter II that the changes in forces and moments

arising from small disturbances could be written as Taylor series ex-

pansions. Thus a substitution for AX can be made as,

AX = - u + p w + g- q + 3X B + 2L 0 (4-4)

where B1 and 9o are cyclic and collective pitch control terms,

respectively.

Using a shorthand notation of L = Xi, equation (4-4) can be3i

written as:

AX = Xu u + Xw w + Xq q + X B B1 + Xo 0 o  (4-5)

The linearized equations (4-1), (4-2), and (4-3) can now be written

as:

wu - X u - w - X q + we cos T = XB B1 + Xgo go (4-6)g u w q

- Z u + Z w w - Z q - ye + we sin T = ZB B1 + Z 60o (4-7)g w q g B,'3

- M u - M w - M- w + Be - M q = MB B1 + M0  0 (4-8)
W q 7
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The resulting equations are linear ones with constant coefficients,

and can be written in determinant form with Laplacian notation for

compactness. With this notation S represents d( )/dt. The resulting

determinant is set equal to zero when the natural response of the air-

craft is to be examined. (B1 and 60, the cyclic and collective pitch

inputs = zero.) It should be noted that Zq is always equal to zero and

that M and X are negligibly small so that the final form of the

stability determinant is:

S -X -Xw  wc cosT

- Zu  S-Zw  -V = 0 (4-9)

-M -M S2-M S
u w q

Note: T is usually a small angle such that cos T = 1. For com-

patibility of units, velocity must be in feet per second. To convert

knots to FPS, multiply by 1.6889.

A. THE CHARACTERISTIC EQUATION

The results of the determinant generated in the above manner is

called the characteristic equation and in general is a quartic equation.

It will be shown that in a hover the characteristic equation is reduced

to a cubic equation.

The characteristic equation has the following form:

AS4 + BS3 + CS2 + DS + E = 0 (4-10)

where the value of the coefficients, A thru E, are determined by the

determinant cross-product.
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Solving the characteristic equation will yield four roots. In

classical fixed-wing aircraft longitudinal analysis, the solution ac-

tually yields two sets of complex roots. These sets of roots describe

two sinusoidal motions of the aircraft which are distinguished from each

other by their periods. The longer period motion is called the phugoid

and the shorter period motion is called the short period.

The fixed-wing characteristic equation quartic can also be repre-

sented by the product of two quadratic equations. The coefficients of

the two quadratic equations contain terms which define the damping

ratio, t, and the response frequency, w, of the modes of motion associ-

ated with the quadratic equations.

AS4 + BS3 + CS2 + DS + E tS2 + 2CpwpS + W 2

S2 + 2CSPWSpS + WSpi (4-11)

where the subscript P defines that motion associated with the long

period motion of the aircraft, or phugoid, and the subscript SP . 'ised

to denote the short period motion.

The phugoid mode of motion is one in which the aircraft's angle of

attack remains essentially constant while airspeed and altitude change

as aircraft kinetic energy (airspeed) and potential energy (altitude)

are exchanged until the aircraft's motion dampens out at trim airspeed

(when the system is convergent) or until the aircraft departs controlled

flight (if the phugoid has a divergent nature) (see Figure 4-1). The

respective velocities and altitudes at points 1, 2, and 3 would be in-

creasing or decreasing depending on whether the aircraft's oscillation

was damped or divergent as shown in Figure 1-2.
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V+, -

Figure 4-1. Phugoid Response [

For helicopters the period of the phugoid is typically long, on the

order of 30 seconds while the short period mode of motion is a heavily

damped one in which the aircraft's velocity remains constant. Since the

short period is heavily damped, its period is typically on the order of

one second.

The aircraft's resultant motion can be compared to a spring-mass-

damper system which has two springs and two dampers. Keeping this in

mind, , the damping ratio, is a measure of the amount of damping in the

system. Insofar as the short period has a more heavily damped motion,

it follows that the value of SP will be higher than that for Cp.
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B. HELICOPTER RESPONSE IN A HOVER

Unfortunately, the helicopter's modal response cannot be given the

same clear, consistent physical interpretation as that for a fixed-wing

aircraft. One reason for this becomes immediately apparent when hover-

ing flight is considered. For a conventional fixed-wing aircraft all

phases of flight are conducted with some forward flight velocity. This

is obviously not so with the helicopter.

Suprisingly, the characteristic equation for a helicopter in hover

is a cubic equation, not a quartic. The reason for this is found by

examining the Z-force equation in the determinant:

Zu  S-Zw  VoS = 0 (4-12)

V0 equals zero in a hover, and if Zu equals zero for hovering flight

(as it frequently does) the vertical motion is immediately decoupled

from the pitching motions and fore and aft motions. As a result, the

vertical motion is entirely dependent on Z and is usually a heavily

damped subsidance motion since Zw is usually a large negative number.

The assertion that the vertical motion of the helicopter in a hover is

very dependent on Zw is borne out by the fact that a helicopter's

vertical motion is known to be very responsive to vertical gusts of wind

and to collective pitch inputs.

Once the solution to the Z-force equation is known (S = Z), it can

be removed from the determinant and the system of equations can then be

reduced to a 2 X 2 determinant.
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U = 0 (4-13)

Mu  S2-Mq S

and the resulting characteristic equation will be a cubic:

S3 - (Xu + Mq) S2 + Xu MqS + Mu W =0 (4-14)

The solution of the cubic equation will generally yield a negative

real root and a positive complex root pair. The negative real root

indicates a stable convergence and is principally due to pitch damping

of the rotor whereas the positive pair of complex roots indicates un-

stable oscillation and is due to the coupling of the pitch and longi-

tudinal velocity by the speed stability derivative Mu .

For an articulated rotor, the real root (which indicates the short

period mode) typically has a time to half amplitude of T = 1 to 2

seconds. The long period mode is represented by the oscillatory root

and has a period of T = 10 to 20 seconds and since it is a divergent

motion, a time to double amplitude of T2 = 3 to 4 seconds (Ref. 10).

Although the phugoid motion is unstable, the period and time to

double amplitude are sufficiently long for the pilot to observe the

helicopter's reactions and make necessary control movements to maintain

control of the aircraft.

Hingeless rotors have a higher degree of pitch damping than articu-

lated rotors. This high degree of damping serves to greatly increase
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the magnitude of the real root and it also increases the period and time

to double amplitude of the oscillatory mode. For hingeless rotors the

time to half amplitude is typically 0.2 to 0.5 seconds, while the

oscillatory phugoid mode has a period of 10 to 20 seconds with a time to

double amplitude of 10 to 15 seconds.

C. APPROXIMATION OF THE SHORT PERIOD DURING HOVER

The initial response of the helicopter to gusts is primarily that of

vertical and pitch acceleration, with little longitudinal acceleration.

Since this analysis assumes perturbations from steady, level flight, the

longitudinal degree of freedom can be neglected in order to approximate

the short period mode. (It should be noted that the short period mode

is heavily damped and is characterized by near zero velocity change, so

that the neglect of longitudinal acceleration is reasonable for this

analysis.)

With this assumption, the stability determinant is reduced to:

-M S-M
w q = 0 (4-15)

S-Z -Vw

and the characteristic equation becomes:

(S - Mq) (S-Z) - MwV =0 (4-16)

It has been explained that in hover the pitch and vertical motions

decouple and the two solutions of the characteristic equations are:

S Z and S M (4-17)w q
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As a check on the validity of this assertion note the following

comparison in Table 4-1 between stability derivatives and roots from the

solution of the stability quartic for three different helicopters. The

comparison shows generally good correlation.

TABLE 4-1. Comparison

Zw Mq ROOTS

BO-105 -0.3317 -3.3972 -0.331, -3.4521

CH-53D -0.298 -0.499 -0.2934, -0.8232

OH-6 -0.3404 -1.7645 -0.3544, -1.8794

The helicopter has neutral static stability when disturbed by per-

turbations in pitch or roll. This is because no moments are generated

directly by these motions to move the helicopter back to or away from

its equilibrium position. However, the helicopter in hover does possess

positive static stability when disturbed by longitudinal or lateral

perturbations of wind velocity.

0. HELICOPTER RESPONSE IN FORWARD FLIGHT

As the helicopter departs hovering flight and transitions to forward

flight, new forces come into existance which start to change the stabil-

ity picture. These forces arise from the increasing dynamic pressure

being built up on the aerodynamic surfaces of the helicopter. As a
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result the dynamics of the helicopter in forward flight are different

from those characteristics exhibited in hover. The forces and moments

that act on the helicopter are contributed by the main rotor, tail

rotor, fuselage and tail surface aerodynamics, and gravity.

A stability derivative that arises from forward flight is Mw, the

pitching moment due to angle of attack perturbation. This derivative is

usually equal to zero for the hover condition. It has an unstabilizing

effect on the helicopter's motion for the following reason: As the

helicopter accelerates, the advancing blade experiences increased

dynamic pressure. This increase in pressure results in a change in the

blade angle of attack which produces a lateral moment on the rotor disc

(toward the retreating blade). The moment thus generated is propor-

tional to forward velocity. Because of the gyroscopic effect of the

rotating disc, the tip path plane will respond to this moment after 90

degrees of movement. Therefore the rotor disc will be tilted aft. The

angle of attack increase results in a pitch up moment of the aircraft

which further increases the angle of attack on the rotor system. There-

fore the dynamics of the rotor are a source of instability for the

helicopter in forward flight.

To counter the angle of attack instability of the main rotor in for-

ward flight, a horizontal tail can be incorporated on the helicopter.

The forces and moments produced by the horizontal tail are proportional

to forward velocity so that they are approximately zero in hover and

increase with speed. The horizontal tail will have a stabilizing in-

fluence on the helicopter's motions in much the same way as a horizontal

tail on a fixed-wing aircraft. Since the moments produced by both the
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main rotor and horizontal tail are proportional to velocity, their

relative contributions to stability are actually independent of speed.

As can be seen, M w is influenced by two opposing sources, an un-

stable contribution from the rotor and a stabilizing contribution from

the horizontal tail. Without a horizontal tail, the dynamics of the

helicopter in forward flight are characterized by two stable damped

motions (from the negative real roots) and an unstable oscillatory mode

(from a positive pair of complex roots). In this configuration the

flying qualities are degraded due to the angle of attack instability.

The dynamics of the helicopter in forward flight can be changed by

the addition of a large enough horizontal tail such that static

stability is achieved. For the case of a large horizontal tail , the

pitch and vertical real roots are transformed into two oscillatory roots

with a short period and high damping. The latter motion is similar to

that found in a fixed-wing aircraft.

In actual practice other considerations must be taken into account

which may eclipse the goal of achieving fixed-wing-like dynamics in

forward flight. One such limitation is that a horizontal tail which is

large enough to counter the unstabilizing influences of the main rotor

may simply be too large for weight or drag considerations. Another

factor to consider is that tail effectiveness is reduced at low speeds

due to interference with rotor and fuselage wakes . TIn spite of these

problems it should be noted that almost all single rotor helicopters do

have horizontal tail planes because of the improvement in flying quali-

ties that the addition of this component provides.
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E. APPROXIMATION OF THE SHORT PERIOD IN FORWARD FLIGHT

The assumptions made for the analysis of the short period motion in

a hover are also valid for the approximation of the short period motion

in forward flight. Of course the characteristic equation (4-15) is not

solved so readily because of the -M V term. In a hover this term went

to zero, but in forward flight the characteristic equation must be

solved.

(S - Mq) (S - Zw)= MwV (4-18)

Typically, the short period motion of the helicopter is character-

ized by two negative real roots. This, of course, means that the short

period is a stable motion and is heavily damped. Because of the action

of the horizontal tail as explained above, certain helicopters do

occasionally exhibit a stable oscillatory mode, more in keeping with

fixed-wing dynamics.
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V. INTERPRETATION OF THE STABILITY DERIVATIVES

It has been shown how the individual stability derivatives can be

calculated knowing some basic data about the helicopter, and having

access to theoretical charts relating aircraft performance and response

parameters. An explanation of the characteristics of these derivatives

and their effects on the helicopter's motion is now in order. To begin

with it should be noted that since all airframe contributions are pro-

portional to airspeed, the fuselage and horizontal tail forces will be

equal to zero at zero flight velocity. This fact serves to simplify

certain calculations for the hover condition.

A. X = DRAG DAMPING

This stability derivative acts as a damping force. It will be

negative in sign. The interpretation of X is that it represents an

increase in drag with an increase in forward flight velocity. Physi-

cally this is seen to be true because as forward speed increases the

thrust vector (and the rotor disk) must be tilted more forward to over-

come the effects of increased drag.

In relation to the dynamic motions, Xu has a weak effect on the

phugoid, but one which tends to make the phugoid more stable.
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B. Xw= DRAG DUE TO ANGLE OF ATTACK

Xcan be interpreted as the change in drag on the aircraft which is

brought about by change in angle of attack. It is usually of small

value and does not have much influence on either the static or dynamic

characteristics of stability.

Xwis usually very small or zero for hovering flight. For the

purposes of simplifying calculations, it can safely be assumed to equal

zero for the hover condition.

C. Z u = LIFT DUE TO VELOCITY

This stability derivative is always negative for fixed-wing aircraft

and corresponds to increased lift at higher velocities. (Remember, the

Z-axis is positive downward.) This is not so for helicopters, however.

According to Reference 9, for helicopters Z uis negative at low speeds

but positive at high speeds. This is not especially significant except

at higher forward velocity where it might affect the dynamic divergence.

Z uis usually small for an articulated rotor.

Li ke Xw, Z ucan be assumed to be equal to zero for the hover con-

dition and for the same reasons.

0. Zw = VERTICAL DAMPING

Zw acts as a damping force in the same manner that Xdoes. It also

is negative in sign and occurs because of the vertical motions of the

aircraft. For a helicopter this is an important parameter, especially

in a hover where it describes the response of the aircraft to vertical

gusts. This stability derivative is nearly independent of airspeed for

the helicopter whereas it is proportional to airspeed for fI'ixed-winq

aircraft.
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E. M = VELOCITY STABILITYU

This parameter describes the pitch tendencies of the aircraft with

respect to speed changes. According to Reference 9, at hover and for

very low speeds, most helicopter configurations have Mu positive. This

leads to a positive stick gradient. A positive value for could leadMu

to oscillatory instability and it indicates the aircraft is sensitive to

turbulence.

M changes sign at high forward flight velocities. Negative values
u

of M lead to dynamic divergence.

F. M = ANGLE OF ATTACK STABILITYw

Mw indicates the tendency of the aircraft to pitch up or down as

angle of attack is increased. A negative value of Mw is stabilizing as

it tends to return the aircraft to its previous position whereas a

positive value would be divergent in nature. Most helicopters exhibit

values of Mw that are neutral or positive. A positive value will lead

to dynamic divergence in forward flight. Seckel claims that the center

of gravity position can have an effect on the values of M and conse-w

quently on the resultant stability characteristics of the aircraft. If

the fuselage and horizontal tail contributions are stable with respect

to angle of attack, moving the center of gravity forward will make the

aircraft more stable and aft less so. Conversely, if the fuselage and

horizontal tail have destabilizing tenencies, then the opposite will

occur.

According to Reference 10, Mw -eceives an unstable contribution from

the rotor and fuselage and a stable contribution from the horizontal

. iLAI.
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tail. Mwis the third stability derivative which can be assumed to be

equal to zero for hover calculations with no loss of accuracy in the

results.

G. M q= PITCH DAMPING

This derivative is negative and is a very important one for response

to control deflection and dynamic stability. Most helicopters require

some augmentation of this angular damping for good handling qualities.

The numerical value of M qshould be less than -0.5 [Ref. 9]. Values of

-2.0 are better, but the degree of improvement decreases for values less

than -2.0.
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VI. ANALYSIS OF RESULTS

I

As can be seen from the sample problem, Appendix A, the stability

characteristics of the helicopter under investigation consisted of a

pair of damped oscillatory roots, a divergent real root, and a conver-

gent real root. These characteristics differ from the low-speed

response for the same helicopter. At advance ratios of 0.1 to 0.2 this

aircraft's response was identical to that expected for helicopters in

low speed flight, namely two heavily damped stable roots and a pair of

divergent oscillatory roots. Thus, the stability characteristics of the

helicopter have changed at high speed.

The resulting motion of the helicopter at high advance ratios cannot

be accurately predicted, however, as can be seen from Table 6-1. Tnis

table shows tne different response modes of five helicopters at various

ccnditions of airspeed and center of gravity location. Some interesting

observations can be made from this table.

The response of some helicopters may not change at all with airspeed.

The CH-53D is an example of this. Data obtained from Reference 11

indicates the CH-53 retains the response mode characteristics associated

with hovering flight out to at least 140 knots. Different responses are

exhibited by other helicopters. The OH-6 has a typical hover response

mode which changes into two damped real roets and a damped oscillatory

motion prior to 100 knots. The B0-105 also changes from the hover

response at forwara speed but not until an airspeed greater than 100

S 2
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TABLE 6-1. RESPONSE MODE COMPARISON

AIRCRAFT ROOTS

HOVER 100 KNOTS 140 KNOTS

CH-530 0.1139 t 0.4705 0.1648 ± 0.3097 0.2538 ± 0.2769

-0.2934 -0.3374 -0.2793

-0.8232 -1.3822 -1.7994

HOVER 100 KNOTS 130 KNOTS

OH-6 0.0516 ± 0.4658 -0.0192 ± 0.3186 -0.1027 ± 0.3729

-0.3544 -1.0092 -1.0033

-1.8794 -2.6212 -2.8293

HOVER 100 KNOTS 145 KNOTS

BO-105 0.0188 t 0.4333 0.2709 t 0.4673 1.2449

-0.331 -0.4040 0.3999

-3.4521 -4.7375 -0.3189

-5. 9681

HOVER 100 KNOTS 130 KNOTS

UH-1IH (MID C.G.)

0.1685 +- 0.3535 j-0.0060 ± 0.2820 -13.0211 ± 0.2392

-0.4577 t 0.1527 -0.3653 t 1.0150 -0.9354 ± 1.4882

(AFT C.G.)

0.0 J220 ± 0.2380

-0 37 20 ± 0.76592

HGVER 1G0 KNOTS 140 KNOTS

AH- 'G f (AFT C.G.)

9.1205 ± 0.2517 030O89 ± J.2666 -0.0337 1 32051

-9.4323 ± 01989 -0.7179 t 0.6312 j -J. -442 1.5398

_________________ ____________________________ ___________________________ ___________________________
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knots and then the response is represented by four real roots, two

convergent and two divergent.

Still other examples of stability can be seen with the UH-1H and the

AH-1G. Both of these helicopters have stable oscillatory periods

typical of the response of a fixed-wing airplane. Of interest here is

the change in response with change in center of gravity position at 100

knots. Moving the center of gravity can have a profound effect of a

helicopter. For both the UH-1H and the AH-1G, moving the center of

gravity aft has a destabilizing influence.
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APPENDIX A

SAMPLE PROBLEM

MAIN ROTOR

R = 24 ft c = 1.75 ft

= 29 rad/sec a = 5.73/rad

b =4 ms=85.4 slug-ft

e = 0.5 ft I b = 1200 slug-ft2

E,= -80 1 = - 6 ft

i = -10 ft

FUSELAGE

W = 10,000 lbs A x =60 ft2

Iy = 17,500 slug-ft2  A z 200 ft2

I FUS = 5 ft

TAIL ROTOR

R = 4.6 ft aTR =5.73/rad

b =4 i1T = -30ft

c = 0.75 ft 1 T = -6 ft

E)= 00 j

Q=146.6 rad/sec
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HORIZONTAL TAIL

S = 20 ft2  aT = 3.5/rad Airfoil = NACA 0015

AR = 4.0 XlT = -20 ft CDO = 0.02

iT = 0 1T 0

T

The helicopter's stability characteristics will be evaluated at

Vo = 203 FPS and at sea level. Using the data supplied for the heli-

copter, and the definitions listed in Chapter III or the program STAB

from Appendix 8, the following values are determined:

PSL = 0.002378 slugs/ft3  qo = 49.0 psi

T.F. = 2,084,504 lbs a = 0.093

m = 310.8 slugs p = 0.292

QR = 696 fps MTIP = 0.805

VTIP = 899 fps

(T.F.)TR = 71,896 aTR = 0.207

(QR)TR = 674 fps PTR = 0.30

(MT) = 0.783
TR

Use Figure A-1 to obtain values for CL and C for a FUS = 0.

FLFUS
Cu = 0.16

FUS
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0

-0.04

CM

DFUS -0.08

-0.12

0.2

CN -0.02

MFUS

-0.04

16 -12 -8 -4 0 4

FS-DEGREES

Figure A-1. Fuselage Characteristics for the Sample
Single Rotor Helicopter (0,
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Equations (3-1) and (3-2) yield the fuselage lift and drag:

LFUS = -49 lb DFUS = 470.4 lb

Main rotor lift and drag are obtained from equations (3-3) and (3-4).

LF = 10049 lb F = -470.4 lb

The main rotor lift and drag coefficients are calculated from equations

(3-5) and (3-6).

CL' CD'
L 0.0473 - = -0.0022

0 a

Equations (3-7), (3-8), and (3-9) are used to correct these values if

the main rotor solidity differs from 0.1.

-0.007 (cc') = 0.0473 (i.1D = -0.0021

a 007 T 0.10. 0.02

Now use the appropriate charts in Reference 6 to obtain values for the

following:

a, = 0.0611 rad oc "-0.1222 rad

Q = 0.0025 6 = 50G .75

Also use the charts in Section 5.3 of Reference 5 to obtain:

X= -0.045 ao = 2.30
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The angle of attack of the main rotor and the main rotor torque are

calculated from equations (3-10) and (3-11).

ac = -0.1241 rad Q = 11632 ft-lb

The downwash interference factors for this configuration are KFFUS =

KFT = KFTR = 1.0 and the downwash interference angles equal 0.0312 rad-

ians from equation (3-13).

A relation between aFUS and CM is needed to plot against the
FUS MFUS

experimentally obtained fuselage pitching moment data. Equation (3-14)

will yield:

FUS = -0.0164 + 0.5911 CMFUS

The point of intersection on Figure A-2 will yield the fuselage trim

angle of attack, -2 degrees or -0.0349 radians. Using this value use

Figure A-1 again to obtain the following new values for the parameters

indicated:
CL = -0.0065 

CM = -0.025CFuS CFUS

CDFus = 0.158 CN Fus = 0.007

Use equations (3-1) and (3-2) to recalculate LFUS and DFUS . Also use

equations (3-15) and (3-16) to determine MFUS and NFUS, respectively.

LFUS = -63.7 lb MFUS = -3675 ft-lb

D = 464.5 lb N = 1029 ft-lb
0FUS FUS
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I

-- EXPERIMENTAL DATA
0.04

-- - EQUATION

0

CMFu -0.04

//

-0.08

-0.12 /
I I II

-20 -16 -12 -8 -4 0 4 8

'FUS " DEGREES

Figure A-2. Superposition of the Calculated and the
Experimental Fuselage Pitching Moment Data
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Using NFUS and QF determine the tail rotor thrust and the tail rotor

lift coefficient from equations (3-17) and (3-18).

TTR = 422 lb (cL) = 0.0293TR oTR

Enter the charts in Reference 6 to obtain additional tail rotor para-

meters, knowing the tail rotor lift coefficient. Blade twist = 0,

p = 0.3, and MT = 0.8. Assume ac = 0.

rC D]I 0.0015

LcITR 0.1

Equations (3-19) and (3-20) will yield a value for the drag of the tail

rotor. 0TR = 28.288.

From the trim values obtained earlier and using equations (3-21)

through (3-26) determine the following values for the horizontal

tailplane.

= -0.0037 rad CDT = 0.0216

aT = -0.0349 rad LT = -12.7 lb

CLT = -0.1396 DT  = 19.6 lb

Equations (3-27) through (3-30) will yield a better approximation of the

main rotor lift and drag.

LF = 10060 lbs 0F -515.2 lbs
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Use equations (3-5) through (3-9) to obtain better extimates for the

main rotor lift and drag coefficients. The final trim values of the

helicopter are:

o0.3 L - 0.053

MT = 0.8 (- 0) = 0.0026

o = 0.092 LF = 10060 lbs

I = -80 DF = -515.2 lbs

075 = -5 0  \F = -0.045

C L I C D I
The trim values for CL- 0 and 6 are used to enter the charts

a a ' 75
in Section 7.5 of Reference 5 to get the nondimensional isolated deriv-

atives for the front rotor.

(__ ) 3(-
CL- = = 0.014

L-"' F L u F
L' F 0 1

L a -0.38 =0.07
J3 Lai aaJF F
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0.2 Dal 0.241LIF =LaacJ F :

Solidity corrections are made to these values, if necessary, using

equations (3-31) through (3-41).

Using the isolated derivatives just obtained, the main rotor local

derivatives can be calculated. Computation is done by equations (3-42)

through (3-49). The following results will be obtained:

aLF lb-sec LF b
u _5.56 I = 73666F ft aF rad

3DF lb-secDF lb- 3.89 b = 13570 raauF ft auF rad

aaIF rad-sec 3 aIF
- 0.000244 0.24
3uF ft au F

aMHUB aMHUB

F 17.54 lb-sec F = 17237 lb-ft
auF a F rad

- 0. 09881

Use Figure A-1 to obtain the partial derivative values of C C and C
L' D' M

with respect to a by obtaining the slope of the line at the trim value

of aFUS (-0.0312). The following values were obtained:
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CLFu 0.0005 - 0.0287

auFUS degree radian

aCDFus _ -0.0005 _ -0.0287

au FUS degree radian

aCMFus _ 0.0058 - 0.3323

au FUS  degree radian

The fuselage local derivatives can now be calculated using equations

(3-50) through (3-55). The following results will be obtained:

I= 0.628 lb-sec 3 LFUS = 280.8 lb

au FUS ft aa FUS rad

aOFUS- 4.576 lb-sec aDFUS 84.23 lb
au FUS  ft -a FUS  rad

am~u PU mFus b-ftw- = -36.21 lb-sec - 48848 lb

auFUS aFUS rad

Values for the horizontal tailplane derivatives are calculated using the

previously obtained values for LT and DT and equations (3-56) through

(3-59).

LT 1251 lb-sec aL T b

u= - ft 30T rad

T lb-sec 30 T lb

--- = 0.1931 - -7.07)u- ft _rad
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The tail rotor derivative is obtained from equation (3-20a) and is

aDTR lb-sec
- 0.1545auTR ft

KFT = 1.0 for this configuration and KRF = 0, therefore:

au FUS a T au
- - 0.685 -= 0

as a aut

au FUS a T auF
- - 0.000513 - 1.0au au au

Equations (3-64) through (3-85) are used to calculate the aircraft total

stability derivatives. Alternatively, the computer programs in Appendix

B will simplify this process. XUXW can be used to determine the X-force

derivatives, ZUZW to find the Z-force derivatives, and MUWQ to find the

pitching moment derivatives. Values obtained by either method are as

follows:

X = -8.6318 Ib-sec M = -4.783 sec
u ft j ft

X = -19.075 lb-sec M = 307.32 f-c
w ft Wft

4.344 lb-sec M = -17838.2 sec- t-lbu ft q rad

lb-sec
Z = -375.41 ft
w ft
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MUWQ incorporates some additional relations which must be known if

equations (3-80) through (3-85) are being hand calculated.

aMFUS - am FUS , MFUS 80GFUS

au uFUS au FUS au

MHUB MHUB aHUB 3a
F F ~ F F

au auauF +TOF

MFUS -MFUS acFUS

aa ~FUS a

aMHUB am HUB 30f
F F F

aa F c

amH BF am U F1  -b 1 HUBS
3q 3u- ZF - VO a F + 2 3q

Divide the force derivatives by mass and the moment derivatives by

pitching moment of inertia (I )to form the stability determinant
y

equation (4-9).

S + .0278 0.0614 32.2

-0.014 S + 1.2079 -203 S 0

0.0003 -0.0176 S2 +~ 1.019 S

The characteristic equation will be:

S4 + 2.255 S3 -2.2788 S3 - 0.0776 S -0.0037 =0
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Solving the quartic equation will yield the following roots:

0.7843

-3.0049

-0.0172 ± 0.0357

Therefore this helicopter has the characteristics of a heavily damped

root, a divergent motion, and a damped oscillatory motion.

The time to half amplitude of the damped root is:

T .69h 1-3.00491 = 0.230 sec.

The time to double amplitude of the divergent root is:

.69
2= 10.7843 = 0.880 sec.

The time to half amplitude for the oscillatory mode is:

= .69 40.12 sec.= -0.01721
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WORKSHEET FOR STAB

STORAGE PARAMETER VALUE STORAGE PARAMETER VALUE

01 b 4 O 9

02 c 1.74a c.9

03 R 24 -V.2917

w T

04 29 M w310.8

05 V 203 T.F 2084504

06 10000 y6. 5928

07 p .002378 V T =QR+V 899

08 11200 MT T .805

09 a 5.73 ebQ2M 71821

10 V S 116.4 qo = jpV 2  49

11 M s 85.4 .a 19,2

12 e .5 QR278
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WORKSHEET FOR XUXW

STORAGE DERIVATIVE VALUE STORAGE DERIVATIVE VALUE

01 LF 10060 18 8LFUS 280.8
______________F _____ aaFUS

02 LFU -63.7 19 30FS-84.23

aLT
03 0FU 464.5 24 T-.1251
____ 

au__ T

04 LT -12.7 25 OT .1931

05 V0) 203 26 aLT3430
___________ T

09 at -. 0037 27 aDT -7.07

_____________ 
3a_____ T

10 of-& -.0349 28 FUS= - .000513au u

12 L -5.56 29 actS au T .685

a LF aOF
14 3a- 73666 32 auF3.89

15 aDF 13570

16 FUS
16____ auU -.628

17 aDuS 4.576
___________ aFUS ______
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WORKSHEET FOR MUWQ

STORAGE DERIVATIVE VALUE STORAGE DERIVATIVE VALUE

aa FS 3
00 DTR 28.3 28 auS Tu .000513

FUS T

01 LF 10060 29 US- T .685

F 31 F a

aDT
ZF 8F

08 -o203 34 -6

XT TR

10 oa-s -.0349 35 x UF -3.869

11a F -.09881 38 w-1. 3

13 2 71821 41 U .7

20 amHBF 17.54 43 ZUT -1.635
au F T_____ ____

am HUB

21 Fo 17237 44 w-362.9
_______

3  F F

22 -U -36.21 46 zw -11.574
_______ UFUS T_____ ______ _ _ _ _ _ _ _ _ _ _ _ _

23 aMFUS 48848 50 1x-30
_______ aaFUS TR
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APPENDIX B

COMPUTER PROGRAMS FOR THE HP-41CV CALCULATOR

These computer programs are written for the HP-41 pocket calculator

and are intended to help streamline the process of finding solutions to

some of the problems generated by stability and control analysis. Input

values should be stored as indicated. When prompted for an input value,

the program will store that value in its proper storage register. When

the program is executed, the output values will be labeled by alpha

characters.

Worksheets are included as an aid to organize the input data for the

programs and for the case of the program STAB for recording output data.

A. STAB will calculate many helicopter parameters needed for further

calculations. Both main rotor and tail rotor data can be calculated.

The equations solved for the output values are listed in the definitions

section of Chapter Ill. Input values and their storage locations are

shown in the worksheet for STAB. Space is provided on this worksheet to

record the output values. Output values are labeled by alpha characters.

B. XUXW calculates the X-force total stability derivatives. Equations

(3-64) through (3-71) are solved with this program. The results are

displayed using alphanumerics and are also stored for use in other

programs. See the worksheet for XUXW for the input parameters and their

proper storage location.
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C. ZUZW calculates the total stability derivatives for the Z-direction.

Input data is the same as that for AUXW . Output data is listed by

alphanumerics and is also stored for future use.

D. MUWQ calculates the total stability derivatives for the pitching

moments Mu, Mw, and M . A worksheet with input parameters and proper

storage locations is also provided for this program. Output data is

labeled with alphanumerics.

E. CE finds the coefficients of the characteristic equation generated

by the stability determinant, equation (4-9). The program prompts for

the input values. It is important to note that the X and Z derivatives

must be normalized by aircraft mass ard the M derivatives must be nor-

malized by I Y. Also, velocity must be input in units of feet per second.

The output data will be the coefficients of the stability quartic,

equation (4-9).
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01*LBL "STA 52 XEQ 01
B- 53 RCL 07
02 RCL 04 54 RCL 09
03 RCL 03 55*
04 * 56 RCL 02
05 STO 14 57 *
06 a.OR='" 58 RCL 03
07*LBL 01 59 4
08 ARCL X 60 YtX
09 AVIEW 61 *
10 STOP 62 RCL 08
11 RTH 63 /
12 RCL 01 64 'GAMMA=-
13 RCL 02 65 XEQ 01
14 * 66 RCL 04
15 RCL 03 67 Xt2
16 ' 68 RCL 01
17 PI 69*
18' 70 RCL 12
19 STO 08 71 *
20 -SIGMA=" 72 RCL 11
21 XEQ 01 73*
22 RCL 05 74 2
23 RCL 14 75
24 ' 76 STO 13
25 *MU=" 77 "eb="
26 XEQ 01 78 XEQ 01
27 RCL 06 79 RCL 05
28 32. 174 80 Xt2
29 ' 81 2
30 "MASS=" 82 z
31 XEQ 01 83 RCL 07
32 RCL 14 84*
33 Xt2 85 STO 16
34 RCL 07 86 ,Q=,
35 * 87 XEQ 01
36 PI 88 RCL 15
37 * 89 RCL 00
38 RCL 83 90*
39 Xt2 91 STO 17
40 * 92 "TFSIG=-"
41 STO 15 93 XEQ 01
42 "TF='" 94 RCL 17
43 XEQ 81 95 RCL 14
44 RCL 14 96'
45 RCL 05 97 STO 18
46 + 98 "TFSzOR=
47 **VT="

48 XEQ 01 99 XEQ 01

49 RCL 10 100 "END"
50 z 101 "END"

51 "'MT=I" 102 END
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W " * L B L "4 W .' 5 0 R C L 1 5

2 RCL 12 51 -

03 RCL 09 52 RCL 1

04 * 54 RCL 05

05 RCL 32 55 z

066- 56 STO 38

07 STO 35 57 RCL 18

8 RCL 18 58 RCL 63

09 RCL 16 59 +

11 RCL 19 60 RCL 16

12 - 61 R

13 RCL 28 62 RCL 19
14 *63 -

14 *64 RCL 62

15 RCL 17 65 +

16 -65 
R

17 STO 36 66 RCL 29

18 RCL 16 67*

19 RCL 16 68 RCL 5

20 * 69 z

21 ST+ 36 70 STO 39

22 RCL 26 71 RCL 26

23 RCL 10 72 RCL 10

24 * 73 *

25 RCL 27 74 RCL 27

26 - 75 -

27 RCL 28 76 RCL 04

28 * 77 +

29 RCL 25 78 RCL 29

30 - 79*

31 STO 37 80 RCL 05

32 RCL 24 81 x

33 RCL 10 82 STO 40

34 * 83 RCL 39

35 ST+ 37 84 +

36 RCL 37 85 RCL 38

37 RCL 36 86 +

38 + 87 "XW="

39 RCL 35 88 XEQ 61

40 + 89 "END"

41 -XU=*" 90 END

42.LBL 01
43 ARCL X
44 AVIEW
45 STOP
46 RTN
47 RCL 14
48 RCL 69
49

104

https://www.abbottaerospace.com/technical-library/


61.LBL "ZU. 37 RCL 41
38 +

02 RCL 32
03 RCL 9 48LBL 1

04 * 
41 RCL X

5 RCL 12 42 AVIEW

06 + 43 STOP67 CHS 44 RTN

8 STO 41 
45 RCL 14

9 RCL 17 46 RCL 05

10 RCL 10 47

II * 
48 CHS

12 RCL 16 49 STO 44

13 + 5 RCL 18

14 STO 42 
51 RCL 29

15 RCL 19 52

16 RCL 10 53 RCL 5

17 * 
54 0

18 RCL 03 
55 CHS

19 + 56 STO 4526 RCL 18 57 RCL 26

21 + 58 RCL 29

22 RCL 28 
59*

23 * 
66 RCL 85

24 ST+ 42 61'

25 RCL 42 
62 CHS

26 CHS 
63 STO 46

27 STO 42 
64 RCL 45

28 RCL 26 
65 +

29 RCL 28 
66 RCL 44

30 * 
67 +

31 RCL 24 
68 "ZW=

32 + 
69 XEQ 1

33 CHS 
78 END "

34 STO 43 
71 END

35 RCL 
42

36 +
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01LBL CE" 54 RCL 02

02 XU='" 55 RCL 03

83*LBL 01
04 PROMPT 56 *

05 RTN 58 RCL 09

06 STO 01 59 RC=0

07 XW=?" 60 XEQ 02

08 XEQ 01 61 RCL 08

09 STO 02 62 RCL 0210 "'ZU= ? ""

11 XEQ 01 63 *

12 STO 03 
64 CHS

13 ZW=?" 65 32.2

14 XEQ 01 66 +

15 STO 04 67 RCL 05

16 -MU=?" 68 *
17 XEQ 01 69 STO 10

17XQ 170 RCL 08
18 STO 05 71 RCL 06
19 "MW=?" 72 *

20 XEQ 01 72*
21 STO 06 74 *
22 "MQ=? '  

75 ST+ 10
23 XEQ 01 76 RCL 01
24 STO 07 77 RCL 07
25 "VEL= ?-" 78 *

26 XEQ 01 79 RCL 04

27 STO 08 80 *

28 RCL 01 81 ST- 10

29 RCL 04 82 RCL 02

30 + 83 RCL 03

31 RCL 7 84 *

32 + 85 RCL 07
33 CHS 86 *

34 B=- 87 ST+ 10
35*LBL 02 88 RCL 10
36 ARCL X 89 RD='1
37 AVIEW 90 XEQ 02
38 STOP 

90 RLQ

39 RTH 92 RCL 06
40 RCL 04 92
41 RCL 01 94 STO 11
42 + 95 RCL 05
43 RCL Of 96 RCL 04
44 * 96 R
45 STO 09 98 ST- 11
46 RCL 04 99 RCL 11

47 RCL 01 100 32.2
48 *

49 ST+ 09 101 *
50 RCL 06 182 ALE=-

51 RCL 08 104 AIEW
52 *

53 ST- 09 165 -END-
106 END
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1LBL "MUh 54 ST- 48

55 RCL 0002 RCL 35 56 RCL 05
03 RCL 07 57 x

04* 57 505 STO 47 58 RCL 50
06 RCL 41 66 ST. 4807 RCL 06 61 RCL 2308* 62 RCL 29

09 ST- 47 62 RCL 29

10 RCL 43 63 *

11 RCL 08 65 RCL 31

12
13 ST- 47 66 *
14 RCL 33 67 +
15 RCL 34 68 RCL 05

16* 69'

17 ST- 47 70 ST+ 48

18 RCL 33 71 RCL 48

19 RCL 10 72 MW="

20 * 73 XEQ 01

21 RCL 50 74 RCL 08

22 * 75 Xt2

23 ST+ 47 76 RCL 46

24 RCL 23 77 *

25 RCL 28 78 STO 49

26 * 79 RCL 07

27 RCL 22 80 RCL 11

28 + 81 *

29 ST+ 47 82 RCL 01

30 RCL 21 83 *
84 ST- 49

31 RCL 3085RL2
32 * 85 RCL 20

33 RCL 20 86 RCL 07

34 + 87 *

35 ST+ 47 88 ST+ 49

36 RCL 47 89 RCL 21
37 *'MU=" 90 R L 31
38*LBL 01 91 *39 ARCL X 92 R L 06
40 AVIEW 94 RCL 0541 STOP 95 R5

42 RTH 96 ST- 4943 RCL 39
44 RCL 07 97 ROL 13
45 * 98 RCL 11

46 STO 48 99 *

47 RCL 44100 ST. 49:47 RCL 44 101 RCL 4948 RCL 66 162 "MQ='"

49 *10 M=50 ST- 4 103 XEQ 01

51 RCL 46 105 END
52 RCL 08 185 END
53.
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WORKSHEET FOR STAB

STORAGE PARAMETER VALUE STORAGE PARAMETER VALUE

01 b Q2R

02 c L

03 R

04 Q 32.

05 V T. F

06 w

07 p V T = QR+V

08 1b MT=V

09 a ebQ22M
___ 2

10 V s qo=

11 M ST. F. c

12e .j
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WORKSHEET FOR XUXW

STORAGE DERIVATIVE VALUE STORAGE DERIVATIVE VALUE

01LF 18 Ba FUS

02 LFUSU1
________________~~3 _____ ______ FUS

02~ LL1

03 0FU 24

3DT
04 LT 25 au T

aLtT

09 27 - 0

actT

10 af-s 28 arFUS. 3T

a LF 3CFUS a T
12 aF29 aa aut

14 a F32 a
aF __ _ _ _ _F_ _ _ _ _

15 O

LFUS
16 auFS__ __

aFUS

17 aUFUS
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WORKSHEET FOR MUWQ

STORAGE DERIVATIVE VALUE STORAGE DERIVATIVE VALUE

aa a

01 LF 29 FUS. T

05 V0  30 aIaF

06 1 x 1F
XF 31act

07 1 z 3a TR
ZF auTR ____

08 1 XT 14Z TR

10 35 xU F

11 3aIF 38 xWF

13 ebp 2M
132 41 U F

am HUBF

20 au UF 43 U T

21 aaFU 44 ZWF

22 a'uS 46 w

23 13M FUS 50 1 T
_________ a FUS ______ _______ ________
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