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Abstract: Despite the great advances in analytical methods available to structural engineers, designers 

of brazed structures have great difficulties in addressing fundamental questions related to the load-

carrying capabilities of brazed assemblies. In this chapter we will review why such common engineering 

tools as Finite Element Analysis (FEA) as well as many well-established theories (Tresca, von Mises, 

Highest Principal Stress, etc) don’t work well for the brazed joints. This chapter will show how the classic 
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approach of using interaction equations and the less known Coulomb-Mohr failure criterion can be 

employed to estimate Margins of Safety (MS) in brazed joints 

 

Key words: brazed joints; margins of safety; failure assessment diagram; interaction equations; 

Coulomb-Mohr failure criterion. 

2.1 Introduction 

It is hard to overestimate an importance of brazing in modern manufacturing processes. 

Sophisticated designs of structures and mechanisms used in airspace, aircraft, 

automotive, power and medical industries quite often expect various brazed joints to 

perform under complicated multi-axial loading conditions.  

Despite great advances in brazing technology and applications, reliability of brazed 

joints remains to be one of the least developed fields of structural analysis. Mechanical, 

welded or adhesively bonded joints in metallic and composite structures are routinely 

assessed for their load-carrying capabilities in accordance with widely accepted 

engineering analysis techniques and failure criteria (Blodgett, 1963; Bruhn, 1973; 

Astronautic Structures manual, 1973; Hart-Smith, 1973; Shingley et al, 1989; Tong et al, 

1999). An effort to find any information on engineering practice of estimating or 

predicting load carrying capability of brazed, however, produces almost no results. 

Consequently, there is a need for a simple engineering methodology that would enable 

designers and structural analysts to evaluate strength margins of the brazed joints 

exposed to combined shear and normal stresses.  
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This chapter reviews the challenges of using common failure criteria in predicting failure 

of the brazed joints and offers an alternative approach based on developing failure 

assessment diagrams (FAD). First step in constructing FADs is to identify or develop 

brazed joint failure criteria. It would be highly desirable for such criteria to satisfy the 

following conditions: 

 criteria should be applicable to any brazed joint geometry  

 it should be fairly conservative to account for the many uncertainties associated 

with the brazing process, properties and analysis of the joints. 

 it should be sufficiently simple and easy to use so designers and structural 

engineers find it helpful for practical applications. 

 it should be based on clearly defined properties of the brazed joints that can be 

determined in a fairly straightforward manner.  

For now, this Chapter is limited only to static loading of the brazed assemblies. As our 

knowledge expands, future revisions and/or updates of this chapter may address the 

brazed joints subjected to dynamic loading. 

2.2 Applicability of Common Failure Criteria to Analysis of Brazed Joints 

2.2.1 Maximum Normal Stress 

This criterion predicts failure when the largest normal principal stress reaches the 

uniaxial tensile strength of the material (Dieter, 1976; Dowling, 1993). This criterion is 

commonly used in predicting failure of brittle materials. It is perhaps the simplest failure 

criterion around and can be expressed as: 

[1.1] 



4 
 

ଵߪ ൌ  , ௢ߪ

where ߪଵ is maximum normal  or, according to a convention, 1st principal stress and ߪ௢ 

is the yield tensile strength obtained from tensile test of the standard tensile test 

specimen (ASTM, 2009). It has to be pointed out that in most structural applications 

yielding is considered to be a form of failure. ߪ௢ is calculated as ܲ ൗܣ  , where, P  is the 

yield load observed during the tensile test and A is the initial cross sectional area of the 

test specimen. Engineering community defines yield load as a load causing 0.2% strain 

in uniaxial tension test. As one can see, ߪ௢ is an average stress – an important point in 

our upcoming discussion. ߪ௢ is commonly used in structural design as a mechanical 

property of the material (MMPDS-02, 2005) or tensile yield strength allowable. Value of 

 ଵ is calculated, typically, using finite element analysis (FEA) performed on the entireߪ

structure or its component. 

An attempt to use this criterion for failure assessment of the brazed joints leads to 

several complications. First of all, the “uniaxial tensile strength of the material” is not 

defined when it comes to the brazed joints. For homogeneous metallic material, uniaxial 

tensile strength is a mechanical property of that material, determined, as mentioned 

above, from the standard tensile test, such as, for example, described in (ASTM, 2009). 

Uniaxial tensile test of the butt brazed tensile specimen determines the tensile strength 

of the joint, not the strength of a specific material – brazing filler metal or adjacent base 

metal. Obviously, properties of the filler metal and the base metal do contribute to the 

overall strength of the brazed joint. It is a well established fact that the tensile strength 

of the butt brazed joints exceeds, by far, the tensile strength of the filler metal tested in 
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bulk form (Brazing Handbook, 2007; Rosen et al, 1993). Second problem with this 

criterion is when it is applied to ductile and lap shear brazed joints. Such joints undergo 

relatively large plastic deformation prior to failure, which is quite different from the brittle 

behavior. Consequently, if selected, maximum normal stress criterion may be applicable 

only to a case of uniaxially loaded butt brazed joints where filler metal constraint results 

a highly triaxial stress state causing the braze joint to behave in quasi-brittle manner. 

2.2.2 Maximum Shear and Octahedral Stress 

These two criteria are very similar. Maximum shear stress or Tresca criterion predicts 

failure, manifested by yielding, when maximum shear stress ௠௔௫on any plane reaches 

certain critical value ௢, as expressed in equation below:  

௠௔௫ ൌ ௢ , 

where, again, ௢ is the shear yield strength of the material, i.e. a material mechanical 

property. Determination of ௢ is not as straight forward as tensile allowable. In fact, only 

a thin wall tube subjected to a pure torsion renders a direct measurement of ௢. But 

such type of tests and their results are not readily available. A more common approach 

is to perform a uniaxial tension test and calculate ௢ from ߪ௢ using the relationship 

between maximum shear and principal normal stresses. Equation [2.2] can be written 

as: 

௠௔௫ ൌ
ଵߪ െ ଷߪ

2
ൌ ௢ , 

where ߪଵ and ߪଷ and first  (maximum) and third (minimum) normal principal stresses. In 

uniaxial tension ߪଷ ൌ 0 and ߪଵ ൌ  ,௢. Consequentlyߪ

[2.2] 

[2.3]
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௠௔௫ ൌ ఙ೚

ଶ
ൌ ௢  ݎ݋  ௢ ൌ ఙ೚

ଶ
 , 

As we can see, according to the maximum shear stress theory, maximum value of ௢ is 

0.5 of ߪ௢.  

Maximum octahedral (von Mises) or maximum distortion energy criterion predicts failure 

when shear stress ௛   in octahedral plane reaches critical value ௛௢ (Dowling, 

1993), or: 

௛ ൌ ௛௢ , 

where ௛௢ is also a material property that now represents a critical value of shear stress 

on octahedral plane that causes yielding. The shear stress on octahedral plane can be 

expressed in terms of principal stresses as (Dowling, 1993): 

௛ ൌ ଵ

ଷ
ඥሺߪଵ െ ଶሻଶߪ ൅ ሺߪଶ െ ଷሻଶߪ ൅ ሺߪଵ െ   ଷሻଶߪ

Again, applying von Mises criterion to uniaxial tension test, ߪଵ ൌ ଶߪ ௢ andߪ ൌ ଷߪ ൌ 0, we 

obtain: 

௛ ൌ
1
3

ඥሺߪ௢ሻଶ ൅ ሺߪ௢ሻଶ ൌ ௛௢ 

From equation [2.7] the value of ௛௢ can be also obtained from the uniaxial tension test 

as: 

௛௢ ൌ √ଶ

ଷ
 ௢ߪ

[2.4] 

[2.5] 

[2.6] 

[2.7] 

[2.8] 
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Consequently, in accordance with von Mises criterion, ௛௢ ൌ 0.47 ൉  ௢ compared to 0.5 inߪ

Tresca theory.  

There are several problems with using these criteria for predicting failure in brazed 

joints.  

Both Tresca and von Mises criteria are essentially yielding criteria that are typically used 

to predict an onset of yielding in homogeneous or isotropic ductile metals [Dieter, 1976; 

Dowling, 1993). Brazed joints, however, are quite far from isotropic. Physical and 

mechanical properties within the brazed joins undergo significant changes over very 

short distances as we transverse the brazed joint form one adjacent side of the base 

metal into another. Situation becomes even more complicated when drastically 

dissimilar materials form a brazed joint. Furthermore, a concept of brazed joint yielding 

is not well defined. Tensile tests of the butt brazed specimens as well as the lap shear 

pull tests show practically no difference in stress – strain behavior between the brazed 

and solid specimens up to the point of failure of the brazed joints (Flom, 2011; Spingarn 

et al, 1983; Flom et al, 2004), as shown in Fig.2.1-2.3.  

Recall that successful failure criteria should be applicable to any brazed joint geometry. 

When a butt brazed joint is tested in uniaxial tension, a mechanical constraint provided 

by the base metal develops a triaxial tensile stress state within the braze layer. Even in 

such ductile filler metal as pure silver a level of constraint is so high that hydrostatic 

stress is very close to the axial one, which means that the values of principal stresses 

are very similar (Rosen et al, 1993). In pure hydrostatic stress state (all principal stress 

are equal), shear and von Mises stresses are zero and failure occurs without plastic 
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deformation. Similarly, in butt brazed joint under uniaxial tension, shear or von Mises 

stresses are quite low. Consequently, these stresses would not be good criteria in 

brazed joints with high mechanical constraint and would result in under-prediction of 

failure. 

Let’s consider lap shear brazed joints in which both base and filler metals are ductile. It 

would appear that shear or distortion energy criteria would be much better suited for this 

type of joints, which are typically undergoing large plastic deformation prior to failure. 

However, due to non-uniform distribution of shear stresses within the lap shear joints, 

the values of the shear and von Mises stresses could be quite high, particular at the 

joint ends (Flom et al, 2004), as shown in Fig.2.4.  Experimental results indicate that 

such values could exceed the strength of the filler metal by 2 or 3 times. If one attempts 

to correlate the highest von Mises stress values with the event of failure in lap shear 

joints, such values are going to be much greater than those observed in butt-brazed 

specimens, as shown in Fig.2.5. Consequently, von Mises stress is not a very good 

choice for failure criterion due to its great variation with brazed joint geometry. In 

addition, a major difficulty in estimating von Mises stress in the brazed joint is a reliance 

on our knowledge of the elastic modulus and the yield strength properties of the braze 

layer within the brazed joint. Without such knowledge, the use of Finite Element 

Analysis (FEA) in calculating von Mises stress within the filer metal layer is very limited, 

if not impossible.  

2.2.3 Interaction Equations 
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[2.8] 

Interaction equations were introduced to predict failures in structures subjected to 

combined loading conditions (Shanley et al, 1937). These equations incorporate both 

maximum shear and normal stresses and are expressed in terms of the stress ratios. In 

their simplest generic form interaction equations can be written as (Peery et al, 1982) : 

ܴఙ
௠ ൅ ܴఛ

௡ ൌ 1 , 

where ܴఙ and ܴఛare normal and shear stress ratios, respectively, and the exponents m, 

n  are determined experimentally. Typically, experimental results are plotted as shown 

in Fig.2.6. Stress ratios are determined by calculating maximum normal and maximum 

shear at some specific point in the structure and dividing them by their respective tensile 

and shear allowables, such as: 

ܴఙ ൌ
ఙభ

ఙ೚
    ܽ݊݀   ܴఛ ൌ

ఛ೘ೌೣ

ఛ೚
 

Over the years, interaction equations have evolved into comprehensive and quite 

effective relationships verified experimentally for different structural shapes and loading 

conditions, such as tension, compression, bending, shear, torsion (Blodgett, 1963; 

Engineering Stress Memo Manual, 2008). Before FEA became a standard tool in 

structural analysis, these interaction equations were used very successfully to predict 

failures in astronautic and aircraft metallic structures (Astronautic Structures Manual, 

1975; Bruhn, 1973; Sarafin, 1998). Examples of some of such equations are shown in 

the Table 2.1 below (Astronautic Structures Manual, 1975) 

 

 

[2.9] 
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Table 2.1. Some of Well-known Interaction Equations 

LOADING COMBINATIONS INTERACTION EQUATIONS MARGINS OF SAFETY (MS) 

Normal and Bending Stresses ܴఙ ൅ ܴ௕ ൌ 1 
1

ܴఙ ൅ ܴ௕
െ 1 

Normal and Shear Stresses ܴఙ
ଶ ൅ ܴఛ

ଶ ൌ 1 
1

ඥܴఙ
ଶ ൅ ܴఛ

ଶ
െ 1 

Bending, Torsion and 

Compressions 
ܴ௕

ଶ ൅ ܴఛ
ଶ ൌ ሺ1 െ ܴ௖ሻଶ 

1

ܴ௖ ൅ ඥܴఙ
ଶ ൅ ܴఛ

ଶ
െ 1 

Bending and Torsion ܴ௕ ൅ ܴఛ ൌ 1 
1

ܴ௕ ൅ ܴఛ
െ 1 

 

Fairly comprehensive compilation of interaction equations is provided in (Engineering 

Stress Memo Manual, 2008). In addition to their great practical value, interaction 

equations have an interesting feature that may be quite useful for brazed joints 

discussion. There is no requirement that stresses used in interaction equations have to 

act on the same planes. Interaction equations are well suited for structural analysis of 

homogeneous metallic materials. It would be interesting to investigate their suitability for 

predicting failures in the brazed joints. Preliminary results indicate that interaction 

equations can be used for a conservative, lower bound estimate of the failure conditions 

in several base metal / filler metal combinations (Flom, 2011; Flom et al, 2011).  

2.2.4 Coulomb-Mohr Failure Criterion 

This criterion states that fracture takes place in a given plane when a critical 

combination of normal and shear stresses has occurred (Dowling, 1993). This is a very 



11 
 

interesting criterion and definitely worth considering when discussing the brazed joints 

that fail within the braze plane. Coulomb-Mohr criterion has a very simple form that 

assumes a linear relationship between normal and shear stresses: 

߬ ൅ ߪߤ  ൌ ܿ  

In this expression, µ and c are material-specific parameters. Later in this chapter we will 

spend more time discussing this criterion. A modified form of the Coulomb-Mohr 

criterion, proposed by Christensen (2004), shows better correlation with experimental 

results for homogeneous materials. It offers a more general form of failure condition and 

considers a combined effect of hydrostatic (dilatation) and distortion (von Mises) 

components of stress. However, its practical use in analysis of the brazed joints is 

rather limited, since it requires a detailed FEA analysis of the brazed joints which, in 

turn, relies on the knowledge of mechanical properties of the braze layer.  

2.2.5 Fitness-For-Service  (FFS) Approach 

This approach was first introduced in welding industry and now is widely accepted in 

analysis of the critical welded structures containing discontinuities (Dowling et al, 1975; 

Webster et al, 2000; Gordon, 1993; API, 2007). The brand new or existing welded 

structure is evaluated on the basis whether it can safely operate under given loading 

and environmental conditions. Using a certain amount of mechanical testing and 

analytical techniques, a safe-to-operate zone is established for a particular weldment 

containing flaws. Failure Assessment Diagrams (FAD) are constructed to define such 

safe zones. In order to construct FADs, welding industry has adopted a specific failure 

criterion based on static strength and fracture mechanics characteristics of the weld 

[2.9] 
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joint containing flaws. An example of such FAD with respect to the weld joint is shown in 

Fig.2.7. 

FADs are plotted in terms of the fracture toughness and plastic collapse stress ratios 

(Gordon, 1993). The vertical axis represents ratios of RK = K1/Kmat  and horizontal axis 

represents ratios of Rσ = σ/σpc, where K1 is the stress intensity at existing flaw due to 

applied load, Kmat is a fracture toughness of the material, σ is applied stress and σpc is 

a plastic collapse stress for a given welded component. An attempt to apply this fracture 

toughness and plastic collapse - based FAD to the brazed joints is described by 

Leinenbach et al (2007). 

There are several problems of using fracture toughness - and plastic collapse stress –

based criterion for predicting failures in the brazed joints. First, a concept of brazed joint 

fracture toughness is not well defined. It is not clear what fracture toughness of the 

material means in case of the brazed joint consisting of the two adjoining base metals 

(similar or dissimilar) and a thin layer of the filler metal, metallurgically different from the 

base metals. Consider the following argument. Recall, that for a crack to grow, energy 

available for crack extension should exceed the crack resistance which is the energy 

requires to create new crack surfaces. Each material has its own surface energy – it is a 

physical property. If crack is propagated through the filler metal, the energy to create 

new crack surfaces is different, than the energy required for creation of new crack 

surfaces in the base metal. If a crack chooses to propagate through the base metal/filler 

metal interface, the surface energy again will be different. And, finally if the crack 

meanders through the base, filler and interface regions of the brazed joint, than the 
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energy of newly created surfaces will be even harder to define. If the fracture toughness 

of the brazed joint does not have a well established definition, measurements of the 

brazed joint fracture toughness is even less clear, particular when it comes to a 

discussion of validity of the of the fracture toughness testing. Similar problems arise 

when attempting to define and/or measure plastic collapse stress of the brazed joints. 

One can see now how problematic, particular from the practical sense, it would be to try 

to incorporate fracture toughness and plastic collapse stress into failure criteria of the 

brazed joints. 

2.3 Alternative Approach for Developing Brazed Joints FADs  

Let’s consider Coulomb-Mohr criterion and see if it can be used to predict failures in the 

brazed joints while satisfying as many conditions listed in the introduction as possible. 

To begin, we are going to treat the brazed joint as a system, rather than trying to study 

separate regions of the joint which are influenced by complex metallurgical reactions of 

the brazing process and, as a consequence, having significantly different materials 

properties. The latter had been more of a traditional approach taken by many 

investigators attempting to study mechanical properties of the brazed joints [Flom et al, 

2004; Rosen et al, 1980; Tolle et al, 1995; Wen-Chun Jiang et al, 2008). As it was 

briefly mentioned earlier in this chapter, mechanical properties of the braze layer are not 

readily available or can be determined through conventional methods. An evaluation of 

mechanical properties of brazes is a rather challenging endeavor. A very thin cast layer 

of filler metal consists most often of multiple phases and is affected by the braze gap 

size, dilution from the base metal as well as by possible formation of intermetallic 

compounds located at the filler metal / base metal interfaces. Even the properties of a 
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braze layer consisting of a single phase pure metal may be significantly different from 

mechanical properties of identical wrought pure metal tested in the bulk form (Rosen, 

1980), as shown, for example, in Figure 2.8. A presence of additional phases and 

eutectics makes the situation even worse. For example, it is a well know fact that joints 

brazed with Ni-based filler metals, such as AWS BNi2, could develop a variety of 

microstructures and properties depending on joint geometry and the brazing cycle 

(Brazing Handbook, 2005; Lugscheider et al, 1983). Consequently, trying to predict 

mechanical properties of the braze layer either by testing some bulk form of the filler 

metal or using some software specialized in calculating of the material properties of a 

given alloy (Wen-Chun Jiang et al, 2008), may produce unreliable results. Other 

attempts to measure properties of the braze layer were based on testing miniature test 

specimens containing braze (Leinenbach et al, 2007). This approach may also present 

some problems since the aspect ratios of such brazed joints are significantly higher than 

the typical structural joints. Typical ratios of the brazed gaps to the joint size (diameter 

or width) are less than 0.005. Thus, the level of constrain within the braze layer and 

triaxiality of the stress state is very different from the actual brazed joints, which, in turn 

may result in unrealistic ductility and stress-strain response of such miniature 

specimens.  

Consequently, rather than trying to predict the material properties of the braze layer, we 

will focus on the properties of the brazed joint as a whole, or a system. Also, this will be 

more in line with the FFS approach. 

Now, as we ready to apply Coulomb-Mohr criterion to the brazed joints, we can think of 

the constants µ and c , see Eq.[2.9], as representing the properties of the system, not 
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the material properties of the braze layer. Since our goal is to develop braze joint failure 

criterion applicable to any brazed joint geometries, it is constructive to start with the two 

most fundamental ones: a lap and a butt-brazed joints.  

When the brazed joint is subjected to a pure shear loading conditions, normal stress 

acting on the braze plane is zero. The lap shear brazed joints tested under uniaxial load 

do not meet, strictly speaking, the conditions of pure shear. Consequently, the results 

are reported in terms of an average shear stress. In this case, a non-uniform distribution 

of shear stresses within the lap and the peel effects at the joint ends are ignored (AWS 

C3.2, 2008). Therefore, from a practical sense, the presence of normal stresses in 

standard lap shear test specimen is also ignored. If we let σ = 0, the Coulomb-Mohr 

expression for the lap joint can be written as: 

 ൌ ܿ 

Now constant c can be interpreted as simply average shear strength of the lap joint, as 

written below: 

 ൌ ܿ ൌ  ௢ 

where o  is the shear strength or allowable of the lap shear brazed joint. It is interesting 

to note, that for the lap shear brazed joints which represent the most ductile geometric 

configuration, eq. [2.11], takes a form of the Tresca criterion discussed in section 2.2.2 

of this chapter. There are various types of lap shear brazed joint used in the brazing 

industry to test specimens. Several of them are shown in Fig. 2.9.  Some of these joints 

may be a little closer to pure shear then the others and the question is which lap shear 

[2.10] 

[2.11] 
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type is more suitable for measuring shear allowable. A detailed discussion on this 

subject is provided by Peaslee, (1976). It turns out that a single leap shear specimen is 

quite adequate for measuring average shear strength of the brazed joints and any 

attempts to develop braze specimen or test fixtures to eliminate or minimize the peel 

effects as well as the bending of the specimen during testing are of little or no 

consequence. Apparently, the behavior of the lap shear – type joints is predominantly 

controlled by shear which causes extensive plastic deformation and the influence of 

normal components of stresses is typically obscured by the experimental scatter when 

testing any type of the brazed specimens. 

On the other hand, when butt-brazed joint is tested in tension under uniaxial loading 

condition, the shear stress within the brazed plane is essentially zero and can be 

ignored in the practical sense. Therefore, assuming  = 0 and substituting  c = o  , 

Coulomb-Mohr criterion for the butt-brazed joint can be written as: 

μ ൉ ߪ ൌ ௢ ߪ  ݎ݋ ൌ
೚

ஜ
 

When testing standard butt-brazed test specimens to failure, we obtain their ultimate 

tensile strength (AWS, 2008) or tensile allowable σo . It is important to keep in mind that 

the value of σo is constant for a specific base metal/filler metal combination as long as it 

is determined from testing the standard butt-brazed test specimens. This is no different 

from testing material properties of any metallic materials. Consequently, butt-brazed or 

any other brazed joint in which the braze plane is subjected to predominantly normal 

stresses, is going to fail when the maximum normal stress σ = σo . For such condition, 

equation (12), can be expressed as: 

[2.12] 



17 
 

ߪ ൌ
೚

ஜ
ൌ μ   ݎ݋  ௢ߪ ൌ

೚

ఙ೚
 

Now we can define constant µ as a ratio of the brazed joint shear and tensile 

allowables. It is important to remember that o and σo are not the properties of a specific 

material, but the properties of a collection of materials, forming the brazed joints or 

systems subjected to their two most extreme conditions: 1) butt-brazed joint under 

uniaxial load which results in the highest degree of constraint and 2) the lap-shear joint 

also subjected to uniaxial load, which, in turn, results in the most ductile behavior. 

Substituting µ and c in equation [2.13] and dividing by o, Coulomb-Mohr criterion for 

the brazed joints can be written as: 

 ൅
௢

௢ߪ
൉ ߪ ൌ ௢  ݎ݋  


௢

൅
ߪ
௢ߪ

ൌ 1 

As one can see, for the brazed joints dominated by shear stresses, i.e. σ = 0, equation 

[2.14] transforms simply into failure criterion of lap shear joint, such as ߬ = ߬o; Likewise, 

for the brazed joints dominated by normal stresses (߬ = 0) , such as, for example, butt-

brazed joints, eq. [2.14] becomes simply the failure criterion of the butt-brazed joint 

subjected to uniaxial tensile load: σ = σo. 

The same equation, using relationships [2.9], can be written in terms of stress ratios 

ܴఛ and ܴఙ: 

ܴఙ ൅ ܴఛ ൌ 1 

As one can see, eq. [2.15] is identical to interaction equation [2.8] when exponents m 

and n  equal to 1. Another words, equation [2.15] represents perhaps one of the most 

[2.13] 

[2.14] 

[2.15] 
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conservative forms of interaction equations. Graphically, this expression can be plotted 

as a straight line shown in Fig. 2.6. 

A number of the brazed joint systems subjected to multiaxial loading were tested to see 

if the equation [2.15] can be used to conservatively predict failure of various brazed joint 

geometries (Spingarn et al, 1983, Flom, 2011; Flom, 2011 et al, Flom et al, 2009). The 

base/filler metal combinations used in these studies are listed in Table 2 

Table 2.2  Base and Filler Metal Combinations Tested in Previous Studies 

Base Metal Filler Metal Test Temperature Source/Year 
Incoloy 800 AWS BNi-8 650°C Spingarn et al, 1983 
Albemet 162 AWS BAlSi-4 RT Flom et al, 2009 
304 Stainless Steel AWS BAg8 RT Flom, 2011 
304 Stainless Steel Pure silver RT Flom, 2011 
Ti-6Al-4V Al 1100 RT Flom et al,  2011 
 

For each base metal / filler metal family of brazed joints, standard lap shear and butt 

brazed tensile specimens were tested to determine tensile ߪo and shearo strengths 

(allowables) of the respective brazed joints. In addition to standard braze test 

specimens, more complex (verification) test specimens, designed to create combined 

tensile and shear stresses in the brazed joints, were fabricated and tested using 

identical braze processes and test temperatures. For a detailed description of the 

verification specimens, the readers are referred to the references listed in Table 2.2. For 

convenience, all experimental results, expressed in terms of the stress ratios are plotted 

on the same graph shown in Fig. 2.10. As one can see, FAD based on equation [2.15] 

represents a very conservative lower bound estimate of failure condition in the brazed 

joints. It is a well known fact that brazing process variables can greatly affect the 
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strength of the brazed joints (Brazing Handbook, 2007). Our ability to account for all 

process variables and their influence on properties of the brazed joints is rather limited 

and accompanied with considerable uncertainty. Therefore, in an attempt to address 

such uncertainties and increase the level of conservatism, the following procedure was 

used for data analysis and graphing the plots shown in Fig.2.10:  

 First, using global model FEA of the brazed specimens, maximum normal and 

maximum shear stresses were calculated in the finite elements located in the 

brazed plane of the brazed joints. Maximum normal and maximum shear 

stresses were all acted on the braze plane.  

 Second, it was assumed that maximum normal and maximum shear stresses 

were located in the same finite element within the braze plane even though their 

actual locations could be different.   

Two interesting observations can be made when examining experimental results plotted 

in Fig. 2.10. One is that all data points representing specific joint geometries are aligned 

along the same trend lines, as emphasized in Fig. 2.11. The second observation is that 

the stress ratios representing failure of the brazed joints fall on the same trend lines 

regardless of what combination of base and/or filler metal are used to fabricate brazed 

joints, or even their test temperature. These observations can be explained with the 

help of the Mohr circles construction using scarf joints, as an example, as shown in Fig. 

2.12. However, this explanation is not sufficient to rationalize behavior of the T-type 

titanium specimens also showing similar trend, see Figs.2.10 and 2.11. As of the time of 

this writing, no rigorous explanation of the observed trend line for T-specimens have 

been developed. A well-pronounced data dispersion or scatter observed on the graphs, 
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is, most likely, related to the inherent scatter in test results associated with testing of the 

brazed specimens, even the standard ones (AWS, 1963). For example, the results for 

lap shear and butt-brazed specimens, presented in Fig. 2.10 as the data points located 

along each axis, also show considerable scatter. The scatter is most likely a result of 

the variability in internal quality of the brazed joints. Consequently, due to propagation 

of scatter or error, it is quite reasonable to expect even larger scatter in testing more 

complicated brazed specimens.  The observed trend lines could provide an important 

tool useful during preliminary design of the brazed structures. It can help in estimating 

brazed joints margins of safety and predicting their failures. An example of using such 

tool will be given later in this chapter.  

These findings lead to the following simple engineering methodology of developing and 

using Coulomb-Mohr – based FADs:  

1. determine tensile and shear allowables by testing standard brazed test 

specimens (AWS, 2008) and construct FAD line; 

2. using FEA determine maximum normal and max shear stresses acting on the 

braze plane in the actual structural brazed joint subjected to a small arbitrary 

load. This load should act on the joint in the same manner as the design load. 

These stresses will define the coordinates of the point needed to construct 

the trend line. 

3. connect the origin with the point determined in 2) and construct a trend or as 

we call it braze joint line (see Fig.2.13); 

4.  an intercept of FAD line and the braze joint line corresponds to a zero safety 

margin condition or a very conservative, lower bound failure condition. 
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5. fabricate a small number (two or three) of identical or “realistic” specimens 

representing actual brazed joint geometry and test them to failure under 

identical loading conditions. This step will help to determine the actual values 

of maximum normal and maximum shear stresses causing failure. 

Combination of these failure stresses will define the failure point that can be 

plotted to validate the brazed joint line. If the actual level of stresses causing 

failure is of no consequence, this step can be omitted  

 

Now we can demonstrate how beneficial the brazed joint lines can be in designing 

brazed assembly. Suppose such structure is to be fabricated from an expensive and 

difficult to work with material, such as beryllium, for example. Unless one can find a 

reliable source for tensile and shear allowables that have already been established, it 

would be necessary to test certain number of standard lap shear and butt brazed 

specimens. Depending how rigorous and conservative the requirements are, it would be 

up to the program to determine the quantity of test specimens so for instance either A-

basis or B-basis (MMPDS-05, 2010) allowables could be established. The more critical 

the requirements are, the smaller the zone representing safe combinations of stresses 

(safe zone) is, as shown in Fig. 2.14. It is very important to mention that the standard 

brazed test specimens should be manufactured using the same brazing procedure and 

by the same vendor selected for brazing of the actual brazed structure. When step 1 of 

the procedure outlined above is completed and FAD line is constructed, the designer 

needs to define the brazed joint line or trend line specific to the joint geometry 

considered for the brazed structure. In order to do define the trend line, all one needs to 
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do is to perform simplified FEA analysis of the imaginary brazed joint fabricated from 

any well characterized, more conventional base metal/filler metal combination. For 

example titanium base metal brazed with 1100 Al alloy filler metal. Assuming that our 

observations of the brazed joints trend lines (see Figs. 2.10 and 2.11) hold true and are 

validated in future studies, a ratio of maximum normal and maximum shear stresses 

should define the point to construct the brazed joint line, as described in Steps 2 and 3. 

After that, margins of safety (MS) can be estimated as (see Fig. 2.14): 

(OB/OA) – 1 

This geometric procedure, when expressed mathematically, takes form of: 

ଵ

ோ഑ାோ್
        

Equation [2.17] is identical to some of the equations listed in the last column in Table 

2.1.  By changing the brazed joint geometry and/or design (for example changing the 

angle in the scarf joint), one can actually see how such change affects MS of the brazed 

joint. Then, the brazed joint design can be modified to achieve the desired MS.  

Obviously, more base metal/filler metal combinations need to be tested before this 

simple engineering procedure can be accepted in the brazing industry. It is our opinion, 

however, that the preliminary results described in this chapter are very encouraging and 

may generate enough interest in the industry to warrant additional studies of other 

brazed joint systems. 

A word of caution when developing brazed joint shear strength allowables. It is a well 

established fact that average shear strength of the brazed lap joints drops as the 

overlap length increases (Brazing Handbook, 2007; AWS, 2008). Thus, when testing lap 

[2.16] 

[2.17] 
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shear specimens having short overlap lengths (less than 2T, where T is the thickness of 

the base metal), one may get a rather high values of shear strength. This is a typical 

behavior of joints brazed with ductile filler metals. In practice, however, when the lap 

shear joint geometry – based structures are fabricated, the practical overlap lengths are 

kept at 4T or even higher in order to achieve a full load carrying capability of the brazed 

joints. Full load carrying capability or full strength of the brazed joint is considered to be 

achieved when the joint strength becomes equal to the strength of the base metal. Such 

condition is observed in lap shear joints when their overlap lengths are 4T or greater 

(Brazing Handbook, 2005). Therefore, testing specimens with short overlap lengths may 

lead to artificially high values of shear strength allowables. Consequently, a series of lap 

shear specimens covering a range of overlap lengths, typically between 1T and 5T 

should be tested in order to establish the lowest, and not the highest average shear 

strength or allowable, as described in AWS C3.2 (2008). 

2.4 Conclusions 

 Construction of FADs based on Coulomb-Mohr failure criterion provides simple 

engineering tool for conservative estimate of margins of safety in braze joints; 

 More work is required to further validate and better understand the trend line 

behavior of the brazed joints.  
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(a) - base metal blanks; (b) – butt joints;(c) – V60; (d) – D60 and (e) –45˚(e)  

Fig.2.1 Various types of silver-brazed 304SS joints and their behavior vs. base metal 
during tensile test. Note that strain hardening rates are very similar to the base metal. 
Reprinted from Flom (2011). 
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Fig.2.2 Tensile test of 347SS lap shear specimens brazed with Ag filler metal.  Load vs. 
elongation results are plotted for various overlap lengths ranging between 0.5T to 4.5T, 
where T is thickness of the base metal. Note that strain hardening rate is essentially the 
same for different overlaps which indicates that plastic deformation within the brazed 
joint is largely obscured by the plastic deformation of the base metal (Flom, Wang, 
2004). Reprinted with permission from Welding Journal. 
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Fig.2.3 Incoloy 800 specimens brazed with Ni-based AWS BNi-8 filler metal and torsion 
tested at 650°C. Note that the behavior of the brazed joints is very similar to the base 
metal. Credit to Sandia National Laboratory, Spingarn J. R., et al (1983)  
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Fig.2.4 Distribution of von Mises (effective) stress within the 347SS/Ag lap shear brazed 
joints tested to failure. The stress is plotted as a function of the distance from the joint 
edge for specimens having overlap lengths ranging from 0.5T to 5T, where T is the 
thickness of the base metal. Note that stresses in many locations, particular near the 
joint edge exceed, by far, the ultimate strength of the bulk silver, which is about 35 ksi 
(250 MPa), Flom, Wang (2004). Reprinted with permission from Welding Journal. 
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Fig.2.5 Stress distribution in the silver-brazed butt joint determined using FEA. Aspect 
ratio here is 1/42 or approximately 0.024. Most structural brazed joints have much 
smaller aspect ratios, in the order of 0.008. In such joints, the axial stresses are even 
closer to hydrostatic stresses than shown on this plot, Rosen R.S., et al (1993). 
Reprinted with permission of ASM International. All rights reserved. 
www.asminternational.com.   
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Fig. 2.6 Plots of several interaction equations. Note that straight line represents the 
most conservative case.  
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Fig.2.7 An example of FAD used in the welding industry. Vertical axis represents 
resistance to brittle fracture and horizontal axis represents resistance to plastic collapse, 
Gordon (1993). Reprinted with permission of ASM International. All rights reserved. 
www.asminternational.com 
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Fig.2.8 Equivalent uniaxial stress vs. equivalent uniaxial strain plot for silver-brazed 
maraging steel butt brazed specimens tested in torsion. An expanded view of the initial 
region of the test, up to 0.1 strain is shown in (a). The entire test is captured in (b). Note 
a significant difference in strain hardening rate between the bulk silver and a silver layer 
in the brazed joint. Reprinted with permission from Rosen R. S., et al (1980). Copyright 
1980, American Vacuum Society.  
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Fig.2.9. Several types of brazed shear specimens single lap used in various studies to 
determine shear strength of the brazed joints. Effect of eccentricity of the test specimen 
on average shear strength is much less than the experimental scatter and variability of 
the brazing process itself (Brazing Handbook, 2007). Consequently, single lap test 
specimen, described by Peaslee (1976), remains the standard test specimen for 
measuring shear strength of the brazed joints. 
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Fig.2. 10 Test results from previous studies plotted as stress ratios. As one can see the 
FAD line defined by ܴఙ ൅ ܴఛ ൌ 1 can be used quite conservatively for the lower bound 
estimate of stress combinations that may cause brazed joint failure. Titanium lap shear 
and butt brazed specimens (Flom et al., 2011) are also plotted along shear and normal 
stress axes, respectively.  
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Fig.2. 11 The same results as in Fig.10 shown here with the addition of the trend or 
brazed joint lines (dashed). Each trend line is associated with a specific braze joint 
geometry. We can also call them braze joint lines. A position of the data point on such 
line indicates a particular stresses combination.  
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Fig.2.13 Mohr circle construction representing stress state on the braze plane of the 
scarf joint subjected to uniaxial tension. Smaller circle represents a scarf joint fabricated 
from the base/filler metal combination, denoted as A system. Large circle represents 
scarf joint with the identical angle, but fabricated from B system, which is stronger than 
A. Following the nomenclature above and using simple geometric observations, one can 
see that shear and normal stress ratios for scarf joint A form the same proportion as the 
stress ratios for joint B. This explains experimental observation that stress ratios in the 
identical scarf brazed joints fabricated from different base/filler metals fall on the same 
trend line. 
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Fig.2. 13 This graph illustrates the process of constructing the braze joint line and 
determining margins of safety of the brazed joint. Safe zone represents safe 
combinations of stresses. 
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Fig. 2.14 Tensile ߪ௢ and shear ߬௢ allowables can be determined using various levels of 
statistical requirements, as illustrated on this graph. More conservative or stringent 
allowables result in the smaller safe zone. The above graph is showing relative position 
of FAD depending on the relative value of the allowables. For example, if the test 
average values of ߪ௢ and ߬௢ are twice as high as their “B” basis counterparts, it is easy 
to see that the line R߬ ൅R1= ߪ, representing test averages changes to R߬ ൅R0.5= ߪ, 
representing “B” – basis results. 
 

 
 
 
 


